电流伪迹 一般大多微电泳仪均能进行自动电流平衡,一般不会产生伪迹,但手工操作时应注意。 电噪声 如果所要电泳的药物的溶解度和离子化程度低,则其传导性也低,而传导性越低,就越易产生较高的电噪声。在较高电噪
大多情况下,加样时不必更换枪头,可在阴极槽中反复吸打电泳缓冲液清洗,但对Southern 印迹转移和需回收DNA时,应每个样品使用新的枪头,以避免样品交叉污染。2、上样缓冲液不仅提高样品的密度,使样品均匀沉到样孔底,还使样品带色,便于上样,估计电泳时间和判断电泳位置。3、EB是一种强烈诱变剂并有中度毒性,应戴手套操作,对于含有EB的溶液也不应直接倒下水道,用后妥善净化处理:EB含量大于05μg/ml溶 液先用水将EB浓度稀释至05μg/ml以下,每100ml溶液加入100mg活性碳,不时轻轻摇荡混匀,室温放置1小时,滤纸过滤将活性碳与滤纸密封在塑料袋中作为有害废物丢弃。或用专用一次性染料清除袋(Gene有限公司)吸附过夜,再焚烧袋子即 可。4、应在暗箱窗口观察结果,避免紫外线操作者的损伤。5、电泳过程中,EB向阴极移动(与DNA相反),延长电泳时间,EB会从凝胶中迁移出来,从而使小片段DNA难于检测,可将凝胶浸在 05μg/ml EB溶液中重新染色后检测。6、加样孔的加样量依DNA样品中片段的数量及大小而定,通常对05cm宽的加样孔,DNA上样量在01~05μg即可有良好的观察效果。如 样品为酶切产物(由大小不同的DNA片段组成),每孔加20~30μg DNA也不致明显影响分辨率。7、小的凝胶——微型凝胶和中型凝胶的电泳一般比大的凝胶要快,常常用于快速分析。当选择微型或中型凝胶装置时要考虑凝胶槽盛装缓冲液的体积,小胶 通常要在高压下电泳(>10V/cm),所以选择一个相对较大的缓冲液槽比较有利。……………………………………
脑内神经递质分为四类,即生物原胺类、氨基酸类、肽类、其它类。生物原胺类神经递质是最先发现的一类,包括:多巴胺(DA)、去甲肾上腺素(NA,NE)、肾上腺素(AD)、5-羟色胺(5-HT)也称(血清素)。氨基酸类神经递质包括:γ-氨基丁酸(GABA)、甘氨酸、谷氨酸、组胺、乙酰胆碱(Ach)。肽类神经递质分为:内源性阿片肽、P物质、神经加压素、胆囊收缩素(CCK)、生成抑素、血管加压素和缩宫素、神经肽y。其它神经递质分为:核苷酸类、花生酸碱、阿南德酰胺、sigma受体(σ受体)。
重要的神经递质和调质有:①乙酰胆碱。最早被鉴定的递质。脊椎动物骨骼肌神经肌肉接头、某些低等动物如软体、环节和扁形动物等的运动肌接头等,都是以乙酰胆碱为兴奋性递质。脊椎动物副交感神经与效应器之间的递质也是乙酰胆碱,但有的是兴奋性的(如在消化道),有的是抑制性的(如在心肌)。中国生理学家张锡钧和JH加德姆(1932)所开发的以蛙腹直肌标本定量测定乙酰胆碱的方法,对乙酰胆碱的研究起了重要作用,至今仍有应用价值。②儿茶酚胺。包括去甲肾上腺素(NA)、肾上腺素(Ad)和多巴胺(DA)。交感神经节细胞与效应器之间的接头是以去甲肾上腺素为递质。③5-羟色胺(5-HT)。5-羟色胺神经元主要集中在脑桥的中缝核群中,一般是抑制性的,但也有兴奋性的。中国一些学者的研究表明,在针刺镇痛中5-羟色胺起着重要作用。④氨基酸递质。被确定为递质的有谷氨酸(Glu)、γ-氨基丁酸(GABA)和甘氨酸(Gly)。谷氨酸是甲壳类神经肌肉接头的递质。γ氨基丁酸首先是在螯虾螯肢开肌与抑制性神经纤维所形成的接头处发现的递质。后来证明γ-氨基丁酸也是中枢的抑制递质。以甘氨酸为递质的突触主要分布在脊髓中,也是抑制性递质。⑤多肽类神经活性物质。近年来发现多种分子较小的肽具有神经活性,神经元中含有一些小肽,虽然还不能肯定它们是递质。如在消化道中存在的胰岛素、胰高血糖素和胆囊收缩素等都被证明也含于中枢神经元中
前文已述及突触传递是通过突触前膜释放化学递质来完成的(非突触性化学传递的情况也是如此)。一个化学物质被确认为神经递质,应符合以下条件:①在突触前神经元内具有全盛递质的前体物质和合成酶系,能够合成这一递质;②递质贮存于突触小泡以防止被胞浆内其它酶系所破坏,当兴奋冲动抵达神经末梢时,小泡内递质能释放入突触间隙;③递质通过突触间隙作用于突触后膜的特殊受体,发挥其生理作用,用电生理微电泳方法将递质离子施加到神经元或效应细胞旁,以模拟递质释放过程能引致相同的生理效应;④存在使这一递质失活的酶或其他环节(摄取回收);⑤用递质拟似剂或受体阻断剂能加强或阻断这一递质的突触传递作用。在神经系统内存在许多化学物质,但不一定都是神经递质,只有符合或基本上符合以上条件的化学物质才能认为它是神经递质。关于神经递质,首先是在外周迷走神经对心脏抑制作用的环节上发现的。 1.乙酰胆碱在蛙心灌注实验中观察到,刺激迷走神经时蛙心活动受到抑制,如将灌流液转移到另一蛙心制备中去,也可引致后一个蛙心的抑制。显然在迷走神经兴奋时,有化学物质释放出来,从而导致心脏活动的抑制。后来证明这一化学物质是乙酰胆碱,乙酰胆碱是迷走神经释放的递质。以后在许多其他器官中(例如胃肠、膀胱、颌下腺等),刺激其副交感神经也可在灌注液中找到乙酰胆碱。由此认为,副交感神经节后纤维都是释放乙酰胆碱作为递质的。释放乙酰胆碱作为递质的神经纤维,称为胆碱能纤维。
自主神经系统神经末梢的化学传递
人进行了上颈交感神经节的灌流,见到刺激节前纤维可以灌流液中获得乙酰胆碱,所以节前纤维的递质也是乙酰胆碱。现已明确躯体运动纤维也是胆碱能纤维。节前纤维和运动神经纤维所释放的乙酰胆碱的作用,与菸碱样作用(N样作用);而副交感神经节后纤维所释放的乙酰胆碱的作用,也毒蕈碱的药理作用相同,称为毒蕈碱样作用(M样作用)。
2.去甲肾上腺素交感神经节后纤维的递质比较复杂。本世纪初,有人见到肾上腺素对效应器的广泛作用与交感神经的作用极为相似,因此设想交感神经可能是通过末梢释放肾上腺素而对效应器起作用的。后来,在猫的实验中观察到,刺激支配尾巴的交感神经可以引致尾巴上毛的竖立和血管收缩,同时该动物的去神经支配的心脏活动加速;如果将自尾巴回流的静脉结扎,再刺激这一交感神经就只能引致尾巴上毛的竖立和血管收缩,却不能引致心脏活动的加速。由此设想,支配尾巴的交感神经末梢能释放一种化学物质,由静脉回流于心脏,这种物质在当时称为交感素。交感素比乙酰胆碱的性质稳定,当有大量释放时不易破坏,在一般情况下有可能经血液循环作用于较为远隔的效应器官。后来,在刺激支配其他器官的交感神经时,均证明静脉血中出现交感素。曾有人指出,交感素是去甲肾上腺素和肾上腺素的混合物,而主要是去甲肾上腺素。现已明确,在高等动物中由交感神经节后纤维释放的递质仅是去甲肾腺上素,而不含肾上腺素;因为在神经末梢只能合成去甲肾上腺素,而不能进一步合成肾上腺素,由于末梢中不含合成肾上腺素所必需的苯乙醇胺氮位甲基移位酶。释放去甲肾上腺素作为递质的神经纤维,称为肾上腺素能纤维。但是,不是所有的交感神经节后纤维都是肾上腺素能纤维,像支配汗腺的交感神经和骨骼肌的交感舒血管纤维却是胆碱能纤维。
3.嘌呤类和肽类递质自主神经的节后纤维除胆三能和肾上腺素能纤维外,还有第三类纤维。第三类纤维末梢释放的递质是嘌呤类和肽类化学物质。有人在实验中观察到,刺激这类神经时实验标本灌流液中可以找到三磷酸腺苷及其分解产物;而三磷酸腺苷对有肠肌的作用与这类神经的作用极相似,两者均可引致肠肌的舒张和肠肌细胞电位的超极化。因此认为这类神经末梢释放的递质是三磷酸腺苷,是一种腺嘌呤化合物。但也有人认为这类神经释放的递质是肽类化合物,因为免疫细胞化学的研究证实自主神经某些纤维末梢的大颗粒囊泡中含有血管活性肠肽,刺激迷走神经时能引致血管活性肠肽的释放。血管活性肠肽能使胃肠平滑肌舒张,胃的容受性舒张可能就是由于迷走神经节后纤维释放血管活性肠肽递质而实现的。第三类纤维是非胆碱能和非肾上腺素能纤维,主要存在于胃肠,其神经元细胞体位于壁内神经丛中;在胃肠上部它接受副交感神经节前纤维的支配。 1.乙酰胆碱 闰绍细胞(Renshaw cell)是脊髓前角内的一种神经元,它接受前角运动神经元轴突侧支的支配,它的活动转而反馈抑制前角运动神经元的活动。目前知道,前角运动神经元支配骨骼肌的接头处递质为乙酰胆碱,则其轴突侧支与闰绐细胞发生突触联系,也必定释放乙酰胆碱作为递质。用电生理微电泳法将乙酰胆碱作用于闰绍细胞,确能引致其放电;用N型受体阻断剂后,乙酰胆碱的兴奋作用即被阻断,说明这一突触联系的乙酰胆碱作用与神经肌接头处一样都是N样作用
脊髓前角运动神经元与闰绍细胞的反馈联系
位于丘脑后部腹侧的特异感觉投射神经元是胆碱能神经元,它们和相应的皮层感觉区神经元形成的突触是以乙酰胆碱为递质的。例如,刺激视神经时,枕叶皮层17区等处的乙酰胆碱释放增多。
脑干网状结构上行激动系统的各个环节似乎都存在乙酰胆碱递质。例如,脑干脑状结构内某些神经元对乙酰胆碱敏感;刺激中脑网状结构使脑电出现快波时,皮层的乙酰胆碱释放明明显增加;用组织化学法显示脑干网状结构的乙酰胆碱上行通路,发现其与脑干网状结构上行激动系统通路有相似之外。
尾核含有丰富的乙酰胆碱、胆碱乙酰移位酶和胆碱酯酶,尾核内有较多的神经元对乙酰胆碱敏感,壳核与苍白球内某些神经元也对乙酰胆碱敏感。由此看来,纹状体内存在乙酰胆碱递质系统。
此外,边缘系统的梨状区、杏仁核、海马内某些神经元对乙酰胆碱也起兴奋反应,这种反应能被阿托品阻断,说明这些部位也可能存在乙酰胆碱递质系统。
综上所述,乙酰胆碱肯定是中枢的递质,而且分布比较广泛。
2.单胺类单胺类递质是指多巴胺、去甲肾上腺素和5-羟色胺。由于动物实验中采用了荧光组织化学方法,目前对中枢内单胺类递质系统了解得比较清楚。
多巴胺递质系统主要包括三部位:黑质-纹状体部分、中脑边缘系统部分和结节、漏斗部分。黑质-纹状体部分的多巴胺能神经元位于中脑黑质,其神经纤维投射到纹状体。脑内的多巴胺主要由黑质制造,沿黑质-纹状体投射系统分布,在纹状体贮存(其中以尾核含量最多)。破坏黑质或切断黑质-纹状体束,纹状体中多巴胺的含量即降低。用电生理微电泳法将多巴胺作用于纹状体神经元,主要起抑制反应。中脑位于边缘部分的多巴胺能神经元位于中脑脚间核头端的背侧部位,其神经纤维投射到边缘前脑。结节-漏斗部分的多巴胺能神经元位于下丘脑弓状核,其神经纤维投射到正中隆起。
去甲肾上腺素系统比较集中,极大多数的去甲肾上腺素能神经元位于低位脑干,尤其是中脑网状结构、脑桥的蓝斑以及延髓网状结构的腹外侧部分。按其纤维投射途径的不同,可分为三部分:上行部分、下行部分和支配低位脑干部分。上行部分的纤维投射到大脑皮层,边缘前脑和下丘脑。下行部分的纤维下达脊髓背角的胶质区、侧角和前角。支配低位脑干部分的纤维,分布在低位脑干内部。
5-羟色胺递质系统也比较集中,其神经元主要位于低位脑干近中线区的中缝核内。按其纤维投射途径的不同,也可分为三部分:上行部分、下行部分和支配低位脑干部分。上行部分的神经元位于中缝核上部,其神经纤维投射到纹状体、丘脑、下丘脑、边缘前脑和大脑皮层。脑内5-羟色胺主要来自中缝核上部,破坏中缝核上部可使脑内5-羟色胺含量明显降低。下行部分的神经元位于中缝核下部,其神经纤维下达脊髓背角的胶质区、侧角和前角。支配低位脑干部分的纤维,分布在低位脑干内部。
3.氨基酸类 现快明确存在氨基酸类递质,例如谷氨酸、门冬氨酸、甘氨酸和γ-氨基丁酸。
在脑脊髓内谷氨酸含量很多,分布很广,但相对来看,大脑半球和脊髓背侧部分含量较高。用电生物微电泳法将谷氨酸作用于皮层神经元和脊髓运动神经地,可引致突触后膜出现类似兴奋性突触后电位的反应,并可导致神经元放电。由此设想,谷氨酸可能是感觉传入神经纤维(粗纤维类)和大脑皮层内的兴奋型递质。
用电生理微电泳法将甘氨酸作用于脊髓运动神经元,可引致突触后膜出现类似抑制性突触后电位的反应。闰绍细胞轴突末梢释放的递质就是甘氨酸,它对运动神经元起抑制作用。
γ-氨基丁酸在大脑皮层的浅层和小脑皮层的浦肯野细胞层含量较高。用电生理微电泳法将γ-氨基丁酸作用于大脑皮层神经元和前庭外侧核神经元(直接受小脑皮层浦肯野细胞支配),可引致突触后膜超极化。由此设想,γ-氨基丁酸可能是大脑皮层部分神经元和小脑皮层浦肯野细胞的抑制性递质。此外,纹状体-黑质的纤维,也是释放γ-氨基西酸递质的。
上述的抑制是突触后膜发生超极化而发生的,因此是突触后抑制。所以甘氨酸和γ-氨基丁酸均是突触后抑制的递质。已知,γ-氨基丁酸也是突触前抑制的递质;当γ-氨基丁酸作用于轴突末梢时可引致末梢支极化,使末梢在冲动抵达时递质释放量减少,从而产生抑制效应。γ-氨基丁酸对细胞体膜产生超极化,而对末梢轴突膜却产生去极化,其机制尚不完全清楚。有人认为,γ-氨基丁酸的作用是使膜对CI-的通透性增升高;在细胞体膜对CI-的通透性升高时,由于细胞外CI-浓度比细胞内CI-浓度高,CI-由细胞外进入细胞内,因此产生超极化;在末梢轴突膜对CI-通透性升高时,由于轴浆内CI-浓度比轴突外CI-高,CI-由轴突内流向轴突外,因此产生去极化。所以γ-氨基丁酸的作用是使CI-通透性升高,造成超极化还是去极化,取决于细胞内外CI-的浓度差。
4.肽类早已知道神经元能分泌肽类化学物质,例如视上核和室旁核神经元分泌升压素(九肽)和催产素(九肽);下丘脑内其他肽能神经元能分泌多种调节腺垂体活动的多肽,如促甲状腺释放激素(TRH,三肽)、促性腺素释放激素(GnRH,十肽)、生长抑素(GHRIH,十四肽)等。由于这些肽类物质在分泌后,要通过血液循环才能作用于效应细胞,因此称为神经激素。但现已知,这些肽类物质可能还是神经递质。例如,室旁核有向脑干和脊髓投射的纤维,具有调节交感和副交感神经活动的作用(其递质为催产素),并能抑制痛觉(其递质为升压素)。在下丘脑以外脑区存在TRH和相应的受体,TRH能直接影响神经元的放电活动,提示TRH可能是神经递质。
脑内具有吗啡样活性的多肽,称为阿片样肽。阿片样肽包括β-内啡肽、脑啡肽和强啡肽三类。脑啡肽是五肽化合物,有甲硫氨酸脑啡肽(M-ENK)和亮氨酸脑啡肽(L-ENK)两种。脑啡肽与阿片受体常相伴而存在,微电泳啡肽可命名大脑皮层、纹状体和中脑导水管周围灰质神经元的放电受到抑制。脑啡肽在脊髓背角胶质区浓度很高,它可能是调节痛觉纤维传入活动的神经递质。
脑内还有胃肠肽存在,例如胆囊收缩素(CCK)、促胰液素、胃泌素、胃动素、血管活性肠肽、胰高血糖素等。CCK有抑制摄食行为的作用。许多胆碱能神经元中含有血管活性肠肽,它可能具有加强乙酰胆碱作用的功能。此外,脑内还有其他肽类物质,例如P物质、神经降压素、血管紧张素Ⅱ等。P物质是十一肽,它可能是第一级感觉神经元(属于细纤维类)释放的兴奋性递质,与痛觉传入活动有关。神经降压素在边缘系统中存在。血管紧张素Ⅱ的主要作用可能在于调节单受类纤维的递质释放。
5.其他可能的递质近来年研究指出,一氧化氮具有许多神经递质的特征。某些神经元含有一氧化氮合成酶,该酶能使精氨酸生成一氧化氮。生成的一氧化氮从一个神经元弥散到另一神经元中,而后作用于鸟苷酸环化酶并提高其活力,从而发挥出生理作用。因此,一氧化氮是一个神经元间信息沟通的传递物质,但与一般递质有区别:①它不贮存于突触小泡中;②它的释放不依赖于出胞作用,而是通过弥散;③它不作用于靶细胞膜上的受体蛋白,而是作用于鸟苷酸环化酶。一氧化氮与突触活动的可塑性可能有关,因为用一氧化氮合成酶抑制剂后,海马的第时程增强效应被完全阻断。此外,组织胺也可能是脑内的神经递质。
毛细管区带电泳是芯片毛细管电泳分离蛋白质的一种最基本的分离模式。它基于不同的蛋白质分子在电场中的迁移速率不同而实现分离,是一种简单、快速的分离方法。采用区带电泳分离模式已成功地分离了多种蛋白质样品。
Colyer等采用毛细管电泳芯片,以区带电泳模式对人血清蛋白样品进行了分离,可分辨出4个蛋白质区带(即IgG、转铁蛋白、a-1-抗胰蛋白酶和白蛋白区带,分别用以模拟血清蛋白样品中的7、p、dl和白蛋白区带)。其中蛋白质的荧光标记在分离之后进行,由于荧光染料TNS(2-toluidinonaphtha.1-ene-5-sulfonate)标记血清蛋白的灵敏度较低,所以没能实现实际人血清蛋白样品的5个区带分离。Xiao等采用区带电泳模式,以50 mmoVL磷酸盐缓冲液(pH 2.15)作为工作缓冲液,在通道宽度为30um的聚二甲基硅氧烷(PDMS)芯片中,于35s内实现了细胞色素C和溶菌酶的快速分离。Dodge等设计了集成8个微阀和1个微泵的PDMS芯片,通过微阀微泵实现了对液流的有效控制。他们首先采用区带电泳的分离模式分离牛血清白蛋白和肌红蛋白,然后通过阀的作用将分离后的蛋白质组分分别引入微混合器中酶解,最后对产物进行质谱分析。该工作显示芯片技术可用于质谱分析前复杂蛋白样品的预处理。庄等在石英芯片上以75 mmol/L硼酸盐缓冲液(pH 10.3)作为芯片电泳缓冲体系,分离了免疫球蛋白、O/一1一抗胰蛋白酶、牛血清白蛋白和铁传递蛋白,并对经临床确诊的妊娠高血压症、风湿性心脏病、多发性骨髓瘤患者的尿液样品进行电泳分析,在2 min内得到了与美国Helena电泳系统一致的分析结果。
在芯片毛细管电泳分离蛋白质的研究中所要解决的一个重要问题就是通道表面对大分子蛋白质的吸附问题。蛋白质与芯片通道内壁之问的微小吸附效应就会降低蛋白质的分离效率,引起峰形变宽拖尾,影响分离的重现性。在毛细管区带电泳分离模式下,一般采用通道内壁永久改性和缓冲液中加入添加剂进行动态修饰两种方法来抑制蛋白质的吸附。
Wu等采用多层88%水解聚丙烯醇(PVA)修饰PDMS芯片,以区带电泳模式有效分离了两种碱性蛋白质(溶菌酶和核糖核酸酶)以及两种典型的酸性蛋白质(牛血清白蛋白和口.乳球蛋白)。该涂层在pH 3~11范围内均可抑制电渗流的产生和蛋白的吸附作用,并且效果稳定,连续运行70次后分离效果仍然很好。该研究组随后又采用自组装方法在PDMS芯片通道表面加工环氧修饰的聚合物涂层抑制蛋白质的吸附,成功地分离了溶菌酶和核糖核酸酶A。Chiem等在运行缓冲液中加入了无机电解质NaCl和中性表面活性剂吐温20来抑制蛋白质的吸附,利用芯片毛细管区带电泳进行了单克隆抗体的分离分析。 ‘ 在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分离模式,对比了芯片SDS毛细管凝胶电泳与常规毛细管凝胶电泳系统分离蛋白质的性能,结果表明前者的分离效率明显优于后者,分离时间也明显低于后者。
与常规毛细管凝胶电泳相同,芯片毛细管凝胶电泳常用的筛分介质也分为凝胶和非胶聚合物溶液两种。交联聚丙烯酰胺凝胶是广泛使用的一种凝胶筛分介质,Herr等首次将传统的SDS-聚丙烯酰胺凝胶电泳(SDS·PAGE)分离蛋白质的方法移植到芯片上,采用光聚合的方法在芯片通道内制备浓度为6%的交联聚丙烯酰胺凝胶作为筛分介质,在30S的时间内对相对分子质量(M,)在5 500~39 000之问的5种蛋白质进行分离,分离距离仅为4 mm,分离效率达到理论塔板数4.41×105。该研究组’1引后期又在微通道内制备了浓度为22%的交联聚丙烯酰胺膜用于蛋白质样品的预富集,有效富集了相对分子质量为12 000~205 000的蛋白质分子,并采用浓度为8%的交联聚丙烯酰胺凝胶作为筛分介质进行分离。
Agirregabiria等在聚甲基丙烯酸甲酯(PM—MA)芯片上使用SU一8光胶制作微通道,采用浓度为12%的聚丙烯酰胺凝胶作为筛分介质分离蛋白质。随后该研究组又在该芯片上集成金属电极,采用相同的分离模式成功地分离了相对分子质量分别为20 000和97 000的胰蛋白酶抑制剂和磷酸化酶两种蛋白质。然而,交联聚阿烯酰胺凝胶存在制备复杂、不易使用等问题。与其相比,线性聚丙烯酰胺(PLA)、聚乙烯醇(PEG)、聚氧化乙烯(PEO)等非胶筛分介质具有制备简单、使用方便、可以先聚合后注入通道而无需在通道内进行聚合反应等优点,适合在复杂的通道体系中使用,因此在芯片毛细管凝胶电泳中非胶筛分介质得到了广泛的应用。Yao等采用SDS 14·200凝胶缓冲液(Beckman Coulter公司产品)在玻璃芯片上于35 s内分离了相对分子质量在9 000~l 16 000之间的6种蛋白质。Giordano等将NanoOrange染料加入样品和缓冲液中进行蛋白质的动态标记,并对分离缓冲液体系进行了优化,最终选择5%的PEO(M,=100 000)作为筛分介质。该系统对牛血清白蛋白的检出限为500ng/mL,并完成了对实际人血清样品的分离分析。
在芯片毛细管凝胶电泳中,通道内壁对蛋白质的吸附仍是需要解决的重要问题。Bousse等使用聚二甲基丙烯酰胺(PDMA)物理涂覆玻璃芯片微通道内壁,将电渗流降低到0.5×10~m zV s .以SDS凝胶电泳的分离模式在40 s内分离了Bio—Rad公司的蛋白质标准样品’,分离效率达到107塔板/m。Nagata等在PMMA芯片中使用了PEG涂层,以5%线性聚丙烯酰胺为筛分介质,在分离长度为3 mm的通道内实现了胰蛋白酶抑制剂、牛血清白蛋白和卢半乳糖苷酶3种蛋白质的高速分离,分离时间仅为8 S 。 芯片等电聚焦分离蛋白质的原理与常规毛细管等电聚焦基本相同,都是依据蛋白质的等电点(pI)不同而进行分离。Hofmann等首次将毛细管等应用于蛋白质分析。
Li等在PDMS芯片和聚碳酸酯(PC)芯片上,采用等电聚焦模式分离厂牛血清白蛋白和增强型绿色荧光蛋白(EGFP)。Das等。26 3采用高聚物芯片,在等电聚焦电泳模式下优化了,分离长度及电压条件,最终在长1.9 cm的通道内于1.5 min内分离了绿荧光蛋白和R藻红蛋白,分离电压为500 V。Cui等在PDMS芯片上采用等电聚焦分离模式成功分离了组绿荧光蛋白、异藻青蛋白和藻红蛋白。该作者还报道,通过改变样品和分离介质中添加剂甲基纤维素的浓度,可以改变完成蛋白质分离所需要的通道距离,Tsai等通过采用六甲基二硅氧烷等离子聚合膜修饰玻璃芯片通道的方法抑制蛋白质吸附,在等电聚焦的分离模式下分离了藻青蛋白(pI:4·65)、血红蛋白(pI: 7.0)和细胞色素C(pI:9·6)3种蛋白质混合物,分离在3 min内完成,分离效率为19 600塔板/m。Huang等在进行芯片等电聚焦分离蛋白质时,采用在两性电解质溶液中加入羟甲基纤维素作为添加剂的方法来抑制蛋白质的吸附。 芯片毛细管电泳应用的成功促进了高速高效的芯片二维电泳技术的发展。对于多组分的复杂蛋白质样品,采用传统的一维分离方法通常无法满足要求,需要采用二维分离技术来提高分离效率,增加峰容量。与传统的毛细管电泳系统相比,在芯片上进行二维电泳分离,可以通过设计芯片通道结构实现通道的直接交叉或连通,而无需制作复杂的二维毛细管电泳接口,从而避免了因在接口处存在死体积而导致的谱带扩展现象。
在芯片二维电泳分离蛋白质的研究中,第一维分离模式多采用等电聚焦模式。Chen等制作了二维毛细管电泳PDMS芯片,利用第一维的等电聚焦和第二维的凝胶电泳对荧光标记的牛血清白蛋白和碳酸酐酶以及德科萨斯红标记的卵清蛋白进行分离分析。Li等设计了等电聚焦和凝胶电泳联用的二维分离高聚物心4t-片。蛋白质样品在完成第一维的等电聚焦分离后,可在多个并行的通道内完成第二维的凝胶电泳分离。整个分离过程在10 min内完成,峰容量达到1 700。Herr等:”1研制r采用十字通道构型的等电聚焦一自由区带电泳二维芯片系统,芯片通道宽200斗m,深20斗m,待测样品在横向通道中进行等电聚焦分离,分离后的样品区带在电场驱动下进入纵向区带电泳通道中进行第二维分离。系统采用荧光显微镜成像的方法对分离性能进行了评价,5 min内分离的峰容量达到1 300。Wang等通过在PDMS芯片中制作微阀来防止一维等电聚焦和二维凝胶电泳系统之间的分离缓冲液相混合,在20 rain内有效分离了4种标准蛋白质。也有报道在PMMA芯片上进行SDS凝胶电泳和胶束电动毛细管电泳相结合的蛋白质二维电泳分离。该系统在12 min内完成10种蛋白质的分离,峰容量约为l 000。
此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。通常第一维分离采用胶束电动毛细管电泳或毛细管电色谱模式,第二维分离采用区带电泳模式2000年,Ramsey课题组。“1首次在玻璃芯片上建立了胶束电动毛细管电泳(第一维)与区带电泳(第二维)结合的二维分离系统,并应用于细胞色素C、核糖核酸酶、d哥L白蛋白等的胰蛋白酶降解产物分离。其后,该课题组对系统进行了改进,加长了第一维电泳通道的长度,并采用细径转角通道来降低扩散,在约15 min内分离了牛血清白蛋白酶解物,峰容量达到4 200。2001年,他们还研制了开管电色谱和区带电泳相结合的芯片二维电泳系统,其电色谱分离部分采用长25 cm的具有十八烷基三甲氧基硅烷涂层的环状通道,区带电泳部分则采用长1.2 am的直形通道,在13 min内实现了届一酪蛋白胰蛋白酶解产物的分离。
相对于一维分离芯片,二维芯片分离系统具有很高的分离效率和峰容量,预计会在复杂蛋白质样品的分离上发挥更大的作用。 微流控芯片毛细管电泳系统应用于蛋白质的分离分析具有突出的优越性,特别是在临床检验及现场监测等方面的应用具有良好的发展前景,同时,其对分析仪器的集成化、微型化与便携化的发展也具有重要意义。据文献报道,Renzi等已经研制出手持式的微流控芯片电泳分离蛋白质装置。该装置由电泳芯片、小型激光诱导荧光检测系统以及高压电源等组成,其体积仅为11.5 cm×11.5 cm×19.0 cm,可用于现场分析、床旁医学诊断以及取证分析。近年来,国内已有关于利用芯片毛细管电泳进行临床尿蛋白和脂蛋白检测的报道。最近,Pandey等”川使用Caliper公司和Agilent公司的P200蛋白质芯片来检测微量的白蛋白尿,将蛋白质的电泳分离和荧光检测集成化、自动化,实现了其在临床实验室的应用。
目前,很多科研工作者正致力于微流控芯片毛细管电泳与质谱联用技术的研究,以进一步提高系统对复杂样品的分离分析能力。上述系统在蛋白质分离分析及蛋白质组研究中有广阔的应用前景。尤其是对于复杂蛋白质样品的多维分离分析,芯片毛细管电泳以其快速高效的特点,可以作为其中的一维分离方法,显著提高蛋白质的分析通量。相信随着研究的不断深入及相关技术的不断发展,微流控芯片毛细管电泳蛋白质分离技术将日趋成熟,在生化分析、临床诊断和蛋白质组研究领域发挥重要的作用