洒水车水泵叶轮工作转速是多少
洒水车水泵有多种规格现作详细介绍:
型号: 80QZB(F) 60/90 流量(m3/h): 60m³, 扬程(m):90,输出转速:1450 轴功率(kw) : 22.5, 自吸高度(m): 6.5, 自吸时间(min/5m): 1.0 效率:65% ,备注: 左、右旋转。
型号:65QZB(F)40/45 流量(m3/h): 40m³,扬程(m):45,输出转速:1450, 轴功率(kw) : 9.25, 自吸高度(m): 4.5, 自吸时间(min/5m): 1.5, 效率:65%,备注:左、右旋转
型号:65QZB(F)50/45 流量(m3/h): 50m³,扬程(m):50,输出转速:1450, 轴功率(kw) : 15.5, 自吸高度(m): 4.5, 自吸时间(min/5m): 1.5, 效率:65%,备注:左、右旋转。
水泵的比转数一般用ns表示,计算公式如下:
ns = 3.65nQ^0.5/H^0.75
式中 :
Q--------泵容积流量,双吸叶轮用Q/2代入,m3/S
H-------扬程,多级泵用一个叶轮的扬程代入,m
n------泵的转速,r/min 。
在设计制造泵时,为了将具有各种各样流量、扬程的水泵进行比较,将某一台泵的实际尺寸,几何相似地缩小为标准泵,这台标准泵应该满足流量为75L/s,扬程为1m。此时标准泵的转数就是实际水泵的比转数。比转数是根据相似理论得到的一个综合性有因次量的参数,它说明了流量、扬程、转数之间的相互关系。
比转数的特性及其与水泵叶轮的关系:
1.比转数的大小与输送流体的性质无关。
2.比转数的大小与泵的性能曲线和叶轮的形状(包括叶轮出口宽度,叶轮直径。叶片所形成的流道的长短即叶片包角)有密切关系。
3.比转数与效率:
a.比转数高的泵,对应于效率最高时------流量大,扬程小。
b.比转数低的泵,对应于效率最低时-----流量小,扬程大。
4.比转数与叶轮:
a.比转数高的泵,叶轮出口宽度较宽,叶轮直径小,叶片形成的流道宽而短-------对应流量大,扬程小。
b.比转数低的泵,叶轮出口宽度较窄,叶轮直径大,叶片形成的流道窄而长-------对应流量小,扬程大。
1、离心泵的工作点由水泵的特性曲线和管路的特性曲线共同确定:
水泵的特性曲线H = Ho - SoQ^2 是一条向下凹的递减曲线
管路的特性曲线 H = Z2-Z1 + SQ^2 是一条向上凹的递增曲线
式中:H——水泵扬程,
Ho ——流量为零时的扬程,
So——泵内摩阻,
Q——水泵流量,
Z1——水泵吸水池水位,
Z2——出水池水位,
S——管路摩阻。
离心泵出口阀门的开度的变化,意味着管路的特性曲线发生变化。当阀门的开度变小时,管路阻力增大(S增大),管路的特性曲线变陡,由水泵特性曲线的交点向流量变小,扬程变大的方向移动。当阀门的开度变大时,则相反。
至于轴功率、效率的变化应由水泵的特性曲线和管路的特性曲线图上确定。对于离心泵,轴功率随阀门的开度变小而变小。
2、在变频拖动的供水设备中,频率的高低决定了电机的转速,也就是水泵的转速。对于同
一台水泵来说,可以运用水泵的比例定律来计算在不同转速下的扬程,流量,功率。比例定律的定义:同一台水泵,当叶轮直径不变,而改变转速时,其性能的变化规律。
Q1/Q2=N1/N2,H1/H2=(N1/N2)平方,
P1/P2="(N1/N2)立方。
Q,H,P分别是相应转速N时的流量,扬程,轴功率。
3、流量与转速成一次方关系:Q1/Q2 = n1/n2;
扬程与转速成二次方关系:H1/H2 = ( n1/n2 ) 2
电机轴功率与转速成三次方关系:P1/P2 = ( n1/n2 ) 3
由上述推导可以知道,电机转速公式:
n=60f/p,
其中,n为电机同步转速,
f为供电频率,
p为电机极对数,可知电机供电频率f与转速成正比。这样频率与流量、扬程及电机轴功率也有上述的n次方(n=123)比例关系。
你没说已知条件。
H=(Dω)^2/8/g=(0.165X2900X2X3.14X2900/60)^2/8/9.81=31.96米
其中D——叶轮直径
g——重力加速度
ω———叶轮角速度(弧度/秒)
^2——平方。
公式由能量守恒定律推导来的。