水环真空泵原理与故障
水环真空泵因其结构紧凑、操作简单、对环境适应性强而在实际生产中得到最广泛的应用。然而,水环真空泵的故障问题限制了其在实际生产和使用中的有效使用。因此,对水环真空泵常见故障进行深入研究和分析是非常必要的。
1.水环真空泵的工作原理
虽然不同类型的 水环真空泵 具有不同的结构,但它们的基本原理基本相同。水环最典型的真空泵类型是单级单作用水环真空泵,具有轴向吸入和排出。单级单作用水环真空泵的结构包括进气口、出气口、泵盖、泵壳、叶轮、挡板、电机等。真空泵工作时水环,电机带动叶轮旋转,使工作室内的水在离心力的作用下形成水环。如果水环合适,成型的水环正好与上侧的轮毂相切,并且正好与下侧的叶轮顶端接触。此时水环,在内表面、轮毂和叶片之间将形成不同尺寸的新月形空间,并且没有连通。当电机带动叶轮旋转时,图中右侧月牙形空间的体积将由小到大,从而降低压力。当与吸气孔连通时,气体将被吸入。然而,当它的体积从大变小时,气体将被压缩,压力将增加。当气体被压缩到一定程度时,它将与排气孔连通,气体将被排出。由于补充水可以连续引入,水环可以基本上保持恒温状态,并且还可以吸收压缩气体产生的热量,所以该过程也可以近似视为等温过程。
水环真空泵运行时的能量传递过程如下:在吸入侧,叶轮将能量传递给水,增加其动能并形成水环,然后水环动能转化为压力能转化并转化为气体,从而实现压缩和排气的过程。水环真空泵的工作原理实际上与其他容积式泵非常相似,只是水环真空泵的能量传递介质是水环。由于饱和蒸汽压的限制,当真空泵使用水作为工作流体时,极限压力只能达到2000 ~ 4000帕。另外,水环真空泵效率低也是水环真空泵最常见的缺陷,一般效率约为35%。然而,水环真空泵具有结构简单、占地面积小、等温压缩和维修方便等优点,因此在各行业得到了广泛的应用。
2.水环真空泵常见故障及处理
2.1进气和出气管道积水
运行中,水环真空泵与蒸汽冷凝器连接,由于水汽分离设备的工作漏洞,管道可能产生水汽积聚流。水环真空泵停止运行后,水蒸气将逐渐冷凝并最终变成积水。一次产生的累积水可能较少,但多次之后,累积水将增加并最终流回真空泵,导致瞬时电压过高和电机燃烧。进气和出气管道积水的维护和处理:首先,在日常工作中,应定期检查水环真空泵,特别注意进气和出气管道有无积水,以便及时清理少量积水。为防止此类故障再次发生,应对水环真空泵的水气分离器进行改造和完善,如采用耐磨性和耐腐蚀性更高的优质钢材,或加大水气分离器的管径,为水气分离提供更多空间,以减少水汽积聚,消除和防止积水故障。
2.2电机异常启动或过热
首先,马达启动异常。“异常”是指噪音过大或启动失败,这可能是由于泵内(叶轮阻力分配板内)有异物、电机供电电压低和电机不相等造成的。在此基础上,检查电机的接线,以避免相位故障或电源故障等问题。如果真空泵长时间不运转,除了对开口盖进行除锈外,还应在里面加入除锈剂。必要时,还应打开端盖,检查其中是否有杂物,并调整分配板与叶轮之间的距离。其次,电机过热。有三个原因。一是真空泵的供水量过大,导致电机负载过大。第二,电机缺相。第三,通风口被堵住了。有鉴于此,请仔细检查真空泵的排气容积。如果涉及的水量较大,应适当调整(减少)供水阀电工应全面检查电机,避免缺相。仔细检查通风孔。如果有任何问题如堵塞,疏通它。
2.3缺乏真空
水环真空泵系统 真空不足有几个主要原因:
(1) 水环工作不稳定。如果进水管结垢,进口电磁阀堵塞,泵的工作水供应将不足,从而使水环不稳定。此时,由于偏离设计工作条件,泵的输出将不可避免地下降,这将导致系统真空下降。响应方法是清除进水管中的污垢,并保持入口电磁阀通畅。
(2)入口止回阀失效。当阀板因结垢、腐蚀或堵塞而无法吸起时,会出现空气错流现象,即空气会从备用泵的入口被吸入工作泵,从而增加泵的功耗,降低系统的真空度。对策是清除阀板的结垢或更换新的。
(3)密封不良。在轴端密封不良或密封失效的情况下,如果外部空气被吸入水环真空泵,系统的真空度会下降,泵的两个进气管的温度会不同。应对措施是检查轴端,确保密封紧密。有时密封水的泄漏会太大。如果判断错误是由于填料压缩力不足造成的,填料的进一步压缩将导致摩擦力增加和轴功率进一步增加。此时,真正的原因可能是工作水量太大,所以压紧填料不能盲目。
2.4真空泵的气蚀
在 真空泵 运行过程中,最常见的故障是叶轮转子的损坏,这主要是由于叶片表面存在许多麻点和孔洞。在严重情况下,会发生叶片断裂,导致设备非计划停机,影响生产的正常运行。叶轮叶片这些故障的主要原因是气蚀。气蚀的主要原因是真空泵运行过程中,负压区和正压区之间有交替变化,这是由其结构和工作原理决定的。因此,为了减少甚至避免空化的危害,有必要对其结构进行改进。此外,可根据其工作原理采取一些措施。为了防止水环真空泵在气蚀状态下工作,可以采取两种措施:一是改进管道设备,如增加空气喷射器和气蚀保护管等。二是根据空化的产生原理采取相应的改进措施,如降低工作流体的温度、更换工作流体和选择合适的类型。
2.5阀板破裂
水环阀板安装在真空泵的两个排气口分配器的旁边。其功能是消除真空泵运行过程中可能出现的过压缩或欠压缩,并防止泵的功耗增加和效率降低。阀板可以沿着分配器和挡板之间的轴向小距离移动。当泵内压缩气体的压力小于泵出口处的压力时,阀板向叶轮移动并紧贴分配器,以防止空气在泵出口处形成小空腔进入,并确保气体继续被压缩当压缩气体的压力大于泵出口压力时,气体通过排气口冲刷阀板,使阀板的上部以一定角度摆动,以利于气体的顺利排出。通过这种方式,阀板的下部通常紧密地连接到分配器上,而上部以一定角度展开并扭曲成“S”形。长期扭曲导致应力集中在阀板的中部,导致疲劳损坏和中部断裂。阀板破裂后,将出现以下影响:
(1)轴承过热。当阀板破裂时,叶轮两侧的压力将不平衡,转子将产生轴向力,这将增加滚珠轴承的负荷。长期运行会导致轴承温度升高。两个阀板断裂时,断裂位置不完全相同,叶轮两侧的压力也略有不平衡,轴向力比一个阀板断裂时减小,轴承温度降低,但仍较高。
(2)当轴功率上升时,阀板无法按照正确的状态实现分配器的适当覆盖,部分废气将再次回流到工作室,反复压缩和排放,造成能量损失,增加电机负载。
(3)真空度下降。当两侧的阀板破裂时,系统真空将急剧下降。阀板损坏后,必须及时更换。如果一个阀板损坏后不及时更换,另一个阀板的使用寿命将大大缩短,并且在短时间内就会发生断裂。
在实际生产中,为了减少各种故障对生产的影响,除采取上述各种措施外,还应加强在线检查,并采取相应措施及时处理问题。泵停止运行后,应及时清理泵体内的工作流体,防止泵体结垢影响泵的性能和后续使用。
在泵体中装有适量的水作为工作液。当叶轮顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂相切,水环的上部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部0°为起点,那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵
主真空泵的选择计算
s=2.303v/tlog(p1/p2) 其中: s为真空泵抽气速率(l/s) v为真空室容积(l) t为达到要求真空度所需时间(s) p1为初始真空度(torr) p2为要求真空度(torr)
水喷射泵是利用蒸汽作为动力来取得真空的一种真空泵。
水环真空泵
泵的叶轮转子旋转而产生水环。由于转子偏心旋转而使水环与叶片间容积发生周期性改变而进行抽气的机械真空泵。
了解被抽气体成分,气体中含不含可凝蒸气,有无颗粒灰尘,有无腐蚀性等。选择真空泵时,需要知道气体成分,针对被抽气体选择相应的泵。如果气体中含有蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装辅助设备,如冷凝器、除尘器等。
真空泵在其工作压强下,应能排走真空设备工艺过程中产生的全部气体量。
正确地组合真空泵。由于真空泵有选择性抽气,因而,有时选用一种泵不能满足抽气要求,需要几种泵组合起来,互相补充才能满足抽气要求。如钛升华泵对氢有很高的抽速,但不能抽氦,而三极型溅射离子泵,(或二极型非对称阴极溅射离子泵)对氩有一定的抽速,两者组合起来,便会使真空装置得到较好的真空度。另外,有的真空泵不能在大气压下工作,需要预真空;有的真空泵出口压强低于大气压,需要前级泵,故都需要把泵组合起来使用。
正确地选择真空泵的工作点。每种泵都有一定的工作压强范围,如:2BV系列水环真空泵工作压强范围760mmHg~25mmHg(绝压),在这样宽压强范围内,泵的抽速随压强而变化(详细变化情况参照泵的性能曲线),其稳定的工作压强范围为760~60mmHg。因而,泵的工作点应该选在这个范围之内较为适宜,而不能让它在25~30mmHg下长期工作。
真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。如:某真空干燥工艺要求10mmHg的工作真空度,选用的真空泵的极限真空度至少要2mmHg,最好能达到1mmHg。通常选择泵的极限真空度要高于真空设备工作真空度半个到一个数量级。
反应器内的温度高压力大,气体出来后会冷却,体积缩小,但这不能在很短的时间内完成,因其高压,气体出来时处于膨胀扩散状态其中的水分还没有液化,其体积会更大,所以选择大的真空泵才能完成工作。50是不行的,反应器产生的气体体积无法准确计算,水在汽化时体积增大1700倍,反应器排出的气体降温慢的话,由于气压急剧下降体积会迅速膨胀,用大的试验是最好的,不知道液化体积是多少,这些液体汽化体积最少应该也在1000倍以上,而且是常温,温度高体积就更大了。就看降温速度跟液体体积了
降低燃煤电厂厂用电率技术方法
降低厂用电率是提升发电企业经济效益的一项有效措施,应该以机组的安全可靠性为前提,结合电厂实际,全方位综合运用各类节电措施,强化机组优化运行和设备管理,以科技创新为着力点,不断地挖掘节能潜力,谋求企业经济效益的最大化。下面我为大家分享降低燃煤电厂厂用电率技术方法,欢迎大家阅读浏览。
1 降低风烟系统耗电
锅炉风烟系统主要包括送风机、引风机、一次风机、增压风机等,风烟系统消耗的总能量即系统中各风机消耗的能量之和。降低锅炉风机能耗有两个主要途径:
一是在保证锅炉燃烧需要的前提下尽可能降低风烟系统运行的流量和系统阻力
二是选择与锅炉风烟系统相匹配的风机及调节装置,提高风机的实际运行效率。
(1)试验确定主要风机效率曲线。现风机的效率曲线均为制造厂家提供,是风机单体试运时的效率曲线,安装到现场系统后,由于烟风道和挡板等影响出现较大变化,并不能准确反映风机的实际运行情况。结合等级检修前效率试验或专门安排主要风机效率及烟风道阻力试验,确定风机在整套系统中的实际高效运行区,明确检修治理和优化点,明确动、静叶开度与风机效率的关系,优化运行调整,使风机运行在高效区。
(2)严格氧量控制。锅炉运行中过大的过剩空气系数是造成风机流量增加,能耗增加的主要原因之一,不同煤种和负荷应有不同的过剩空气系数,因此应通过试验确定出不同煤种和不同负荷下的最佳运行氧量,优选送、引风机电流、一次风和二次风的比率等参数,输入自动控制系统,以便运行人员监视和控制。
(3)引风机与增压风机单耗合并监测、分析与调整。开展引风机与脱硫增压风机不同负荷工况下的优化运行试验,选取总耗电量的最小点工况,维持增压风机入口微正压,对应设立调整优化曲线。
(4)引风机、增压风机合并改造,加装变频器或者选用汽动驱动。新机组投产应该选用为“引增合一”方式环保设施综合改造、脱硫旁路挡板取消后,风机出力能够满足运行要求,不建议进行“引增合一”改造。合并改造的联合风机应加装变频装置,节电效果明显。有稳定可靠的热用户,联合风机可选择背压式汽轮机驱动,大大降低厂用电率如果选用凝汽式汽轮机驱动,系统复杂,投资大,容易出现节电不节煤现象,需慎重进行技术经济比较。
(5)降低系统运行阻力。主要监管压差的设备为:空预器、除尘器、脱硫除雾器、脱硫GGH、脱硝催化剂、低温省煤器等,设立压差监测的上下限值。结合对引、送、一次风机等辅机的电流监视,及时发现主要压差监控设备运行工况。将吹灰、冲洗等管理措施与压差上下限管理相结合,控制设备压差在合理范围内。
(6)风烟系统泄漏治理。重点监测部位为:锅炉的冷灰斗周边、水封、关断门、人孔门、看火孔、风烟挡板的法兰面和门轴、防爆门等,发现漏点尽快治理。运行中发现风机电流升高,排烟温度异常降低或升高,应及时检查处理。
(7)空预器漏风治理。空气预热器的漏风是风烟系统的主要漏风点,漏风率控制在8%以下,超过6%应查找原因,及时治理若漏风率长期超过8%,则应通过检修调整密封间隙或改进空预器密封结构,可采用柔性密封、接触式密封等技术。
(8)送风机双速改造。低速运行时有明显的节电效果,根据情况在夏季高负荷时段,风机高速运行,维持锅炉燃烧所需风量。
(9)低负荷单侧风机运行。试验确定单风机运行耗电与双风机耗电情况比较,确定单侧风机运行时机组最大负荷,完善机组控制逻辑,实现系统的顺控启停与并列操作。
(10)增压风机加装旁路烟道。低负荷时可停运增压风机,利用引风机剩余压力克服脱硫系统阻力,降低风机能耗。
2 优化制粉系统运行
(1)确定不同负荷的磨煤机运行方式。根据煤质及每台磨煤机特性,尽可能保证磨煤机最大出力运行,根据负荷变化及时启、停磨煤机。对于双进双出式磨煤机应对比长期负荷工况,选择最佳钢球装载方案,如长期低负荷工况运行则适当减少钢球装载量。
(2)提高磨煤机出、入口温度。注意监督冷风门的严密性,并设法在检修中保证冷热风门关闭严密。运行中尽可能保证每台磨入口风门在较大的开度,减少风门节流损失加装一次风冷却器降低磨煤机入口风温,加强空预器换热,降低排烟温度采用一次风压母管压力调节的方式,有效降低一次风机电耗。
(3)控制一次风压,降低一次风率。保证一次风压与炉膛压差在0.6kPa左右,控制一次风各风管风速均匀,风速控制在24~27m/s以内为佳。
(4)碎煤机连续运行。减轻给煤机和磨煤机的磨损,也可降低2~5%的磨煤机电耗。
3 除尘除灰系统节电
(1)电除尘设备治理。如保持合适的极板间距、治理极板弯曲变形、阴极线脏污、振打装置缺陷等。针对电袋除尘器,可以采用优化袋区的喷吹时间及间隔,合理控制好布袋的压差,既降低了引风机电耗还能延长布袋的使用寿命。
(2)电除尘智能集中节能自动控制。自动管理和控制电除尘器高低压等各设备的运行,通过工况特性分析及反馈控制,自动选择高压供电的间歇供电占空比和运行参数,使设备始终运行在功耗最小、效率最高的理想状态。
(3)电除尘器高频电源改造。通常在除尘器一、二电场采用高频电源,大幅增强烟尘的荷电量,减少电场内无效的空气电离所消耗的.能量,既提高除尘效率,又减少能耗。
(4)优化输灰系统运行方式。根据机组负荷、输送系统的运行情况来设定输灰系统仓泵进料时间,减小空压机能耗。
4 脱硫系统节电
(1)优化浆液循环系统运行。湿法脱硫工艺中,在部分负荷情况下可视情况适当提高浆液PH值,同时保证浆液密度合理,可停运一台浆液循环泵而保证脱硫效率不降低,当恢复该台浆液循环泵运行后应尽快降低浆液PH,以稀释浆液中的亚硫酸盐,保证石膏品质。合理控制脱硫吸收塔液位,既可提高反应区浓度,也可以有效降低浆液循环泵和氧化风机电耗。
(2)采用脱硫添加剂。经技术经济比较合适后,可采用添加脱硫增效剂,提高反应能力,可以减少浆液泵全容量运行时间,降低浆液泵电耗。
(3)加强除雾器的水冲洗。除雾器压差越低风机电耗越小,控制除雾器压差小于200Pa运行,否则应进行水冲洗。
(4)加强GGH吹灰管理。对于具有GGH的脱硫装置,必须加强吹灰管理,建议加装蒸汽吹灰装置。建立GGH压差与机组负荷的对比曲线,发现异常应及时处理。
(5)氧化风机由罗茨风机改进为高速离心风机,提升风机效率。
5 循环水系统节电
(1)建立循环泵台数与循环水温度、排汽压力对应曲线。现在大部分机组均采用了动叶可调式或采用高低速循环水泵的运行方式,应通过试验明确循环泵台数与循环水温度、排汽压力对应最佳运行曲线,严格执行。将二台机循环水出入口管道联络,以便实现两机三台循环水泵的运行方式。
(2)加强循环水系统胶球和滤网的管理。胶球系统重点监视收球率,投入胶球时尽量利用循环水流量较大的时机。二次滤网应采用定期投入与压差管理相结合,及时清污和排污。
(3)循环水系统节水。根据水源水质及深度节水要求,试验确定循环水处理工艺,采用循环水浓缩倍率自动控制,减少循环水补充水。
(4)优化开式水运行方式。根据现场实际情况,减少开式水泵运行时间,采用开式水出入口门全开(或加装旁路),依靠循环水压力冷却。
(5)闭式泵电机双速改造。根据机组运行状况和季节变化,合理地切换高低速运行方式。
6 其他设备系统优化
(1)无电泵启动。进行必要的系统完善,机组启动时不用电动给水泵,采用汽动给水泵前置泵上水。
(2)凝结水泵系统。减小凝结水系统管道阻力,避免采用调节阀调节流量,凝结水泵变频调速改造已相当普遍,或者进行更可靠的永磁调速改造,根据负荷调整凝结泵出口压力,有效降低凝泵电耗。当给水泵采用凝结水作为机械密封水时,可以通过改造增加机械密封泵替代,实现凝结水泵全负荷段变速运行。
(3)空压机系统。分析厂区内各类压缩空气系统的运行状况,确保安全前提下进行连通合并改造。具备条件的可在灰用空气系统加过滤器,代替仪用空气系统运行,实现仪用空压机停备。
当机组备用或检修时,具备条件后应及时隔离停备机组的仪表或灰用空气系统。
(4)输煤系统。做好原煤仓料位监测,优化输煤程控方式,严格控制输煤皮带空载运行时间,尽量保证输煤皮带尽可能大负荷连续运行。
(5)化水系统。通过水平衡试验,掌握电厂用水现状和各水系统用水量之间的定量关系,节约新鲜水量、减少废水排放量,寻找节水的潜力。
保证制水系统在满出力下运行,保证膜处理系统按设计回收率运行,减少膜系统污堵,缩短制水时间,减少制水次数。
(6)前置泵系统。新建机组的除氧器高位布置、前置泵与汽动给水泵同轴设计,彻底解决了前置泵耗电问题在役机组通常采用前置泵叶轮切削方式尚有一定的节电空间。
(7)燃油系统。具备变频改造条件的应实施供油泵变频改造,即使供油泵未进行变频器改造,也可以在锅炉燃烧稳定可靠、保护装置完整的前提下,日常运行时停止供油泵运行。
(8)真空泵系统。通常有2种方式来提高水环真空泵抽吸能力:一是采用深井水、中央空调冷媒水等冷却方式降低真空泵的工作液温度二是加装大气喷射器或蒸汽喷射器提高真空泵入口压力。近年来,部分机组使用罗茨-水环泵串联抽真空技术,该设备采用罗茨泵抽吸凝汽器不凝结气体,经过冷却器冷却后再进入水环真空泵,通过以小代大的方式运行,节电明显。
(9)次要厂用变压器冷备用。由于设备选型预留的裕度较大,部分380V厂用变压器维持空载或轻载运行。应结合厂用电平衡管理,选择燃料、照明、检修、热网等厂用变压器,进行优化配置,停止次要厂用变压器的运行,实现冷备用。