高温锅炉给水泵产生气蚀的原因有哪些?
本答案由长沙三昌泵业技术员整理而成,仅供广大用户参考!
高温锅炉给水泵对泵体结构、抗压性、稳固性要求比较高,良好的流道设计和叶轮的设计能够最大程度上减少气蚀对锅炉泵的损害,这也是对水泵行业提出的有一个新的考题。
高温锅炉给水泵汽蚀或汽蚀过程就是流动的液体产生气泡并随后发生破裂的过程。当流体的绝对速度增加,由于流体的静压力下降,对于一定温度下流体的某些特定质点来说,虽无热量自外部输入,但它们已达到了汽化压力,使得质点汽化,并产生汽泡。沿着流道,如果流体的静压力随之再次升高,大于汽化压力,汽泡就会迅速破裂,产生巨大的属于内向爆炸性质的冷凝冲击。若汽泡破裂不是发生在流动液体时,而是发生在导流组件的壁面处,则汽蚀会导致壁面材料受到浸蚀。
当高温锅炉给水泵在汽蚀状况下操作时,即使没有发生壁面材料的浸蚀,也会发现此时高温锅炉给水泵的噪声增大,振动加剧,效率下降,以及扬程降低。
装置汽蚀余量:又称为有效的汽蚀余量。装置汽蚀余量是由于吸入装置提供的,在高温锅炉给水泵进口处单位重量液体具有超过汽化压和水头的富余能量。国外称此为有效的净正吸头,即泵进口处(位置水头为零)液体具有全水头减去汽化压和水头净剩的值,用NPSHa表示。它的大小与装置参数跟液体性质有关。因为吸入装置的水力损失和流量的平方成正比,所以NPSHa随流量增加而减小。NPSHa-Q是下降的曲线。
多级高温锅炉给水泵汽蚀余量与装置参数无关,只与泵进口部分的运动参数有关。运动参数在一定转速和流量下是由几何参数决定的。这就是说NPSHr是由泵本身(吸水室和叶轮进口部分的几何参数)决定的。对既定的泵,不论何种液体(除粘性很大。影响速度分布外),在一定转速和流量下流过泵进口,因速度大小相同故均有相同的压力降,NPSHr相同。所以NPSHr和液体的性质无关(不考虑热力学因素)。NPSHr越小,表示压力越小,要求装置必须提供的NPSHa小,因而泵的抗汽蚀性能越好。
高温锅炉给水泵汽蚀余量(NPSHr)和泵内流动情况有关,是由高温锅炉给水泵本身决定的平衡泵进口部分的压力降,也就是为了保证泵不发生汽蚀,要求在泵进口处单位重量液体具有超过汽化压力水头的富余能量。国外称此为必需的净正吸头。泵汽蚀余量的物理意义表示液体在泵进口部分压力下降的程度。所谓必需的净正吸头,是指要求吸入装置必须提供这么大的净正吸头,方能补偿压力下降,保证泵不发生汽蚀。
高温热水泵汽蚀或汽蚀进程即是活动的液体发作气泡并随后发作决裂的进程。当流体的绝对速度添加,由于流体的静压力降低,关于必定温度下流体的某些特定质点来说,虽无热量自外部输入,但它们已达到了汽化压力,使得质点汽化,并发作汽泡。沿着流道,假如流体的静压力随之再次添加,大于汽化压力,汽泡就会敏捷决裂,发作无穷的归于内向的冷凝冲击。若汽泡决裂不是发作在活动液体时,而是发作在导流组件的壁面处,则汽蚀会致使壁面资料受到浸蚀。
当高温热水泵在汽蚀情况下操作时,即便没有发作壁面资料的浸蚀,也会发现此时高温热水泵的噪声增大,振动加重,功率降低,以及扬程降低。 设备汽蚀余量:又称为有用的汽蚀余量。设备汽蚀余量是由于吸入设备供给的,在高温热水泵进口处单位分量液体具有超过汽化压和水头的富余能量。国外称此为有用的净正吸头,即泵进口处(位置水头为零)液体具有全水头减去汽化压和水头净剩的值,用NPSHa表明。它的巨细与设备参数跟液体性质有关。由于吸入设备的水力损失和流量的平方成正比,所以NPSHa随流量添加而减小。NPSHa-Q是降低的曲线。
多级高温热水泵汽蚀余量与设备参数无关,只与泵进口有些的运动参数有关。运动参数在必定转速和流量下是由几许参数决议的。这即是说NPSHr是由泵自身(吸水室和叶轮进口有些的几许参数)决议的。对既定的泵,不管何种液体(除粘性很大。影响速度散布外),在必定转速和流量下流过泵进口,因速度巨细一样故均有一样的压力降,NPSHr一样。所以NPSHr和液体的性质无关(不考虑热力学要素)。NPSHr越小,表明压力越小,请求设备有必要供给的NPSHa小,因此泵的抗汽蚀性能越好。
):
ΔQ1=m1(TCP12-60CP11)
ΔQ2=m2(170CP21-TCP22)
m1=Vρ60 =983.2V
m2=ρ170(17.5-V)=897.3(17.5-V)
饱和蒸汽的绝对压力为0.7377MPa时见前面计算,T取168.13℃。
CP11=0.988;CP12=CP22=1.0445;CP21=1.046
令ΔQ1=ΔQ2,代入各参数数值:
983.2V(1.0445×168.13-60×0.998)=897.3(17.5-V)×(170×1.046-1.0445×168.13)
解出V=0.31m3
加入冷水时,P0降低,蒸汽流量会加大,不单纯是两种温度的水混合。可以放宽估计,当短时间内加60℃的补水达1m3时,可能
引起汽蚀。
(4)泵
出口流量增加多少时可引起汽蚀
当生产负荷突然加大,管网上管阻突然减少或管网上有大量泄漏,都会导致泵出口流量增大。
这些情况发生时,会使稳态运行中的除氧器液位突然降低,同时有冷水补入。冷水补入的影响,前边已讨论过,在此不考虑这一因素
,只按流量增大所引起的泵入水口处静压降低来推敲。
流量突然加大,泵进水管内流速加大,水的漏流程度提高,动压头和阻力损失都会加大,所增大的部分要由静压头转换。
在流量为150m3/h,原输入侧管路损失:
Σhf(1-2)=1.1m水柱高,据Σhf=ξu2/2
U=Q/S=150÷3600/π÷4×0.082≈8.29m/S
ξ=2Σhf/U2≈0.032
前面已知现有10m的安装高差,相当于9m水柱高,这9m水柱高扣除汽蚀余量及原有阻力损失计5m水柱高,剩4m水柱高。
令ΔU2/2+ξΔU2 /2=4
得ΔU ≈2.784m/s
又ΔQ=ΔUS=2.784×π/4×0.082=0.014m3/S=50.38m3/h
即流量突然增加大于等于50.38 m3/h 情况下,有产生汽蚀的可能。
可以用一句话来概括三项定量分析结论:半个汽压壹方水、五十流量可捣鬼。
2 预防和消除汽蚀的对策
据上述分析,汽蚀的原因就在于除氧器内汽压的突然降低、水温的突然降低或泵流量的突然增加。由此,提出以下对策:
(1)若汽源压力和供应能力皆富裕,应设置除氧压力自控装置,保证P0的稳定。
(2)若汽源压力和供应量不富裕,应在提压增量后再配压力自控装置,保证P0的稳定。
(3)减少硫化机、罐同时入线台数,即减小流量增长率。
(4)减少以致杜绝管线泄漏。
(5)提高补水水源水温。
(6)在保证最有效除氧换热效果前提下,除氧器液位控制点尽量设高。
(7)水泵的供水能力要大于生产最大负荷,以考虑局部泄漏问题。
(8)在水泵出口设置排汽阀门,当汽蚀发生时,开阀排放所生成的汽体。或可同时提高除氧器供汽压力。
(9)设置除氧器内汽压同水泵入口水压之间的差压测量显示仪表,以监视其变化。若该差压大于某一数值,则预警汽蚀的发生(此差压不是定值,水温愈高、流量愈大,差值愈小)。
(10)发生大量跑水时,增加供水泵台数,这样,每台泵的流量就会小些,泵入口处静压损失也会小些。
节流调节的缺点是泵流量较小时,叶轮容易引起汽蚀。这是因为离心泵的叶轮在原动机的带动下高速旋转,当阀门开度减小,流量太少时,不能将叶轮与液体摩擦所产生的热量完全带走,使泵内液体温度升高。因而引起液体汽化,形成汽蚀。尤其是发电厂中锅炉给水泵更为显著。所以采用节流调节时要设置再循环系统,加大泵的输出流量以防止汽蚀。
当给水流量降到最大流量的1/3时,就应开启再循环门,使通过给水泵的流量适当增加,以保证给水泵内液体温度不至上升。
1.流量(抽水量)
水泵在单位时间内所输送的液体数量。用字母Q表示,常用的体积流量单位是m3/h或L/s。常用的重量流量单位是t/h。
2.扬程(总扬程)
水泵对单位重量(1kg)液体所做之功,也即单位重量液体通过水泵后其能量的增值。用字母H表示,其单位为kg.m/kg,也可折算成抽送液体的液柱高度(m)表示;工程中用国际压力单位帕斯卡(Pa)表示。
3.轴功率
泵轴得自原动机所传递来的功率称为轴功率,以N表示。原动机为电力拖动时,轴功率单位以kW表示。
4.效率
水泵的有效功率与轴功率之比值,以叩表示。水泵的效率为:
N=Nu/N
式中 N—轴功率,kW;
Nu—有效功率,即单位时间内流过水泵的液体从水泵那里得到的能量,kW。
水泵的有效功率为:
Nu-(1-2)
式中 Nu—有效功率,kW;
y—液体的容重,k9/m3;
Q一流量,m3/s;
H—扬程,m。
5.转速
水泵叶轮的转动速度,通常以每分钟转动的次数来表示,以字母咒表示。常用单位为r/min。在往复泵中转速通常以活塞往复的次数来表示(次min)。
6.允许吸上真空高度及汽蚀余量
允许吸上真空高度指水泵在标准状况下(即水温为20℃、表面压力为一个标准大气压)运转时,水泵所允许的最大的吸上真空高度。以Hs表示,单位为mH20。水泵厂一般常用Hs来反映离心泵的吸水性能。
汽蚀余量指水泵进口处,单位重量液体所具有超过饱和蒸汽压力的富裕能量。以Hsv表示,单位为mH2O水泵厂一般常用汽蚀余量来反映轴流泵、锅炉给水泵等的吸水性能。汽蚀余量在水泵样本中也有以h来表示的。
H值与Hv值两者是从不同的角度来反映水泵吸水性能好坏的参数,H值越大,水泵吸水性能越好;Hv值越大,水泵吸水性能越差。
水泵厂通常是用特性曲线来表示上述6个性能参数之间的关系的。在水泵样本中,除了对该型号水泵的构造、尺寸做出说明以外,更主要的是提供了一套表示各性能参数之间相互关系的特性曲线,使用户能全面地了解该水泵的性能。
每台水泵铭牌上所列出的性能参数是该水泵在设计转速下运转,效率为最高时的流量、扬程、轴功率及允许吸上真空高度或汽蚀余量值,也就是该水泵在设计工况下的参数值,它只是反映在特性曲线上效率最高那个点的各参数值。
当泵的入口压力低于该温度下的饱和蒸汽压力时,液体就汽化,同时还有可能有溶解在液体内的气体从液体中逸出,形成大量的小汽泡,这些小汽泡随液体流到叶轮的流道内,叶轮旋转时产生的压力大于饱和蒸汽压时,这些小汽泡重新凝结、馈灭,形成一个空穴。这时周围的液体以极高的速度向这个空穴冲来,液体的质点互相撞击形成局部水利冲击,使局部压力可达数百个大气压。汽泡越大,其凝结馈灭时产生局部水击越大,这种水力冲击的速度很快,频率可达2500次/s,在叶轮表面发生猛烈的撞击,产生机械腐蚀。上述这种液体的汽化、凝结、冲击和对金属剥蚀的综合现象就称为汽蚀。
汽蚀危害
汽泡馈灭时,液体质点互相撞击,会产生噪音,汽蚀严重时会产生振动,流量、扬程、效率会明显下降,甚至会出现“抽空”现象,同时叶轮会因汽蚀剥蚀减薄,甚至叶片和盖板被穿透。
发生汽蚀的基本条件
发生汽蚀的基本条件是叶片入口的最低液流压力低于该温度下液体的饱和蒸汽压力。
有效汽蚀余量是指介质自吸入罐经吸入管道到达泵入口后,所富余的高出汽化压力的那部分能头,这个富余能头习惯上称为有效汽蚀余量,用符号Δha表示。它的数值大小与吸入管路优劣有关,与泵本身无关。当NPSHa数值大时,表示吸入管路设计合理,其值愈大愈好,要强调的是上述都是指泵在输送液体为水且又在常温时。当输送液体为烃时,其汽化压力和烃的化学结构有关,要进行必要的修正。当非常温时,就是输水也要进行饱和蒸汽压的修正。在高原地区因大气压低,也要进行必要的修正。 有效汽蚀余量数值的大小与泵吸入罐的压力、温度、吸入管道的几何安装高度、介质的性质等操作条件有关,与泵本身的结构尺寸无关,因此有效汽蚀余量又称为泵装置的有效汽蚀余量。泵的必需汽蚀余量表示介质从泵入口到叶轮内最低压力点处的全部能量损失,用Δhr 表示。这个值越小,泵越不容易发生汽蚀。
离心泵的有效汽蚀余量与必需汽蚀余量关系的关系
离心泵入口处的富余能量Δha若能克服这个能量损失Δhr还有剩余,即Δha>Δhr,则表示介质流到叶轮最低压力点时,其压力还可高于介质的饱和蒸汽压力而不至于汽化,所以就不会发生汽蚀,反之Δha<Δhr,介质就汽化,泵就会发生汽蚀。
离心泵汽蚀余量大了比较好。
因为节流调节的缺点是泵流量较小时,叶轮容易引起汽蚀。这是因为离心泵的叶轮在原动机的带动下高速旋转,当阀门开度减小,流量太少时,不能将叶轮与液体摩擦所产生的热量完全带走,使泵内液体温度升高。
因而引起液体汽化,形成汽蚀。尤其是发电厂中锅炉给水泵更为显著。所以采用节流调节时要设置再循环系统,加大泵的输出流量以防止汽蚀。
使用维护:
离心泵停机主要是由机械密封的失效造成的。失效的表现大都是泄漏,泄漏原因有以下几种:
动静环密封面的泄漏,原因主要有:端面平面度,粗糙度未达到要求,或表面有划伤;端面间有颗粒物质,造成两端面不能同样运行;安装不到位,方式不正确。
补偿环密封圈泄漏,原因主要有:压盖变形,预紧力不均匀;安装不正确;密封圈质量不符合标准;密封圈选型不对。
实际使用效果表明,密封元件失效最多的部位是动,静环的端面,离心泵机封动,静环端面出现龟裂是常见的失效现象。
各种泵的型号解读不一样,只能举几个例子供参考;
1、排污泵系列型号意义
Q:潜水 W:排污 G:管道 Y:液下 N:泥浆 Z:自吸 L:立式
AS:撕裂 JY:搅匀 P:不锈钢 B:防爆
QW(WQ)无堵塞潜水式排污泵
例:80WQ(QW)P40-15-4
80 WQ(QW) P 40 - 15 - 4
│ │ │ │ │ └—-泵的电机(KW)
│ │ │ │ └———-泵的扬程(m)
│ │ │ └—————--泵的流量(m3/h)
│ │ └———————-不锈钢材质
│ └—————————-潜水排污泵
└———————————--泵的口径即代表泵排出公称直径(mm)
2、SG系列管道泵
例:50SG15-30
50 SG 15 - 30
│ │ │ └—叶轮经第一次切割
│ │ └—-——流量分类、(I)为大流量、
│ └————┬SG型管道离心泵
│ └SGR型热水管道离心泵
└-——————泵的口径
3、SPG系列管道屏蔽泵
例:SPG80-200(I)A
SPG (R) 80 - 200 (I) A (B) (C)
│ │ │ │ │ │ │ └—-叶轮经第三次切割
│ │ │ │ │ │ └—-——叶轮经第二次切割
│ │ │ │ │ └—————叶轮经第一次切割
│ │ │ │ └———————流量分类
│ │ │ └—————————叶轮名义外径(mm)
│ │ └——————————-—泵进、出口公称直径(mm)
│ └————————————┬流体类别(普通不注、热水为R)
│└腐蚀性流体为T,防爆为B
└———————————————-屏蔽式管道离心泵
4、 消防泵型号意义
XBD系列消防泵
例:XBD10.4/5-50LG
XB D 5.0 / 5 - 50 DL
│ │ │ │ │ │┌DL立式多级消防泵 转速1450r/min
│ │ │ │ │ ││LG立式多级便拆消防泵 转速2900r/min
│ │ │ │ │ └┼ISG立式单级单吸消防泵
│ │ │ │ │ │TSWA卧式多级消防泵
│ │ │ │ │ │ISW卧式单级单吸消防泵
│ │ │ │ │ └GDL立式多级管道消防泵
│ │ │ │ └—-—泵的口径(mm)
│ │ │ └———-—流量(L/s)
│ │ └———————消防泵压力(扬程(50m))
│ └——————-——电动
└——————————消防泵
5、 磁力传动离心泵型号意义
CQ系列磁力传动离心泵
例:32CQ-15
32 CQ - 15
│ │ └—扬程
│ └—-——磁力传力离心泵
└—————进口直径(mm)
6、多级离心泵系列型号意义
DL、DLR系列立式多级离心泵
例:100DDLR100-20×4
100 D DL R 100 - 20 × 4
│ │ ││ ││ └—-泵的级数
│ │ ││ │└————单级叶轮扬程(m)
│ │ ││ └———————流量(m3/h)
│ │ │└————————-热水
│ │ └—————————-立式多级
│ └———————————多出口
└————————————-泵的口径即代表泵排出公称直径(mm)
TSWA系列卧式多级离心泵
例:50TSWA×5
50 T S W A × 5
│││││ └——————泵的级数
││││└————————-新一代产品
│││└—————-————输送低温类似清水介质
││└——————-————单吸叶轮
│└———————————-透平式
└————————————-泵的口径即代表泵排出公称直径(mm)
LG、LGB系列便拆式高层建筑给水多级离心泵
例:100LG-B(R)72-20×6
100 LG-B (R) 72 - 20 × 6
│ │ │ │ │ └—泵的级数
│ │ │ │ └———-新一代产品
│ │ │ └—————--输送低温类似清水介质
│ │ └——————-—-单吸叶轮
│ └——————————-透平式
└————————————-泵的口径即代表泵排出公称直径(mm)
GDL系列便拆式管道多级离心泵
例:50GDL18-15×5
50 GDL 18 - 15 × 5
│ │ │ │ └—泵的级数
│ │ │ └———-设计点单级扬程15(mm)
│ │ └—————--设计点流量18(m3/h)
│ └——————-—GDL便拆式管道多级离心泵
└—————————-泵的口径即代表泵排出公称直径(mm)
GC型水泵系卧式单吸多级分段离心泵
例:21/2GC-6×5
21/2 GC - 6 × 5
│ │ │ └-叶轮数量或级数
│ │ └———缩小为1/10泵的比转数,即比转数为60
│ └—————锅炉给水泵
└——————-—吸入口直径(mm)被25除得值并化整
CDLF系列轻型不锈钢立式多级离心泵
例:CDLF4-160
CDL F 4 - 160
│ │ │ └-160-级数*10
│ │ └———4-额定流量(m3/h)
│ └—-———F-(普通型略)过流部件为不锈钢304或316
└————-——-CDL-冲压轻型立式多级离心泵
D型卧式多级离心泵
例:80D12×5
80 D 12 × 5
│ │ │└-叶轮数量
│ │ └—-——单吸扬程(m)
│ └—————单吸多级分段式离心泵
└———————-吸入口直径
等等!供您参考!!!