增压泵怎么调压力
先将增压泵内充满液体,然后启动离心泵。
叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去。
叶轮从吸入室吸进液体,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片。
反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。
扩展资料:
自动增压泵怎么调节压力:
1.弹簧压力开关:这种压力开关是最原始的,主要靠水压产生的压力压缩弹簧的方式来接通和断开电路。
2.电子稳压开关:这种开关有两种,分别是可以靠下限压力启动,水位浮头位置(依靠水流冲击力)来停止和依靠上下限压力值来启停的。
3.压差式电路开关:这种通过微机芯片和简单程序控制的,相对上面两种最大进步是可以通过菜单的方式精确设定上下限启停压力值。
4.变频控制:这种是目前最先进的自动增压控制方式。通过复杂的程序来控制水泵调速和启停。一般水泵专用变频控制的都有单独的压力设定键,长按压力设定键即可激活压力设定,按上下或左右箭头即可改变目标压力值。
参考资料:增压泵百度百科
现有两台市水泵,一台功率18.5kw,另一台11kw,两台泵扬程相同,可否并联运行于同一个管路中,有人说“大机拖小机“不行,又有人说可以的,烦请各位帮忙指教,谢谢!
供水系统中调速水泵有关问题的探讨
作者:覃正清
时间:2003年3月24日
1、前言
水泵调速技术已经存在多年,早期主要是一些低压水泵采用低压变频器进行调速,因为成本不高,所以采用比较普遍。而对于高压水泵的调速,早期还大多是采用液力偶合器、串级调速等传统方法来实现。随着高压大功率变频器的出现,目前采用高压变频器对高压水泵进行调速逐渐成为一种趋势。由于高压变频器目前成本相对较高,许多供水行业的人士出于投资回收考虑,对水泵调速这项技术本身及其可以取得的效益都比较关心,经常有如下一些疑惑:
a供水系统一般多台水泵并联运行,设计原则是同压头水泵并联,同流量水泵串联。而调速泵速度降低后,按一般常理认为,其输出水压将降低,那么调速泵如何再与其他工频泵并联,是否有内耗存在?
b常说水泵流量和转速成正比,压力和转速平方成正比,其功率则和转速立方成正比,也就是说水泵的功耗是按流量的立方关系变化的,假设水泵流量调到一半时,水泵的轴功率只有满流量时的12.5%,省电应达到87.5%,可为什么实际系统的节能效果远不是这样?到底怎样预估一个水泵调速系统的节能潜力? c调速水泵和工频水泵并联运行时,调速水泵能否无限制往下调速?调速泵是不是转速到0时流量才为0?并联工频水泵会不会过流?调速泵会不会水流倒惯?调速时应注意什么问题?
d水泵调速方法有哪些?究竟什么方式比较可取?对水泵进行调速改造,除了节能,到底还能有什么其他效益?
本文将从水泵的工作特性出发,解释和回答这些问题,不对之处,欢迎专家指正。
2、水泵的工作特性
图(1)
水泵定速工作时,工作特性如图(1)所示。曲线①为水泵按转速N1定速工作时的Q-H曲线,曲线②③为管路特性曲线。
在第一种负载工况下,水泵工作在A点,流量为Q1,压力为H1。当流量减为Q2时,水压将上升到H2,水泵工作在B点。水压的上升,一方面存在不必要的电耗,另一方面也可能威胁到供水管网的安全。
从水泵定速工作特性曲线看出,尽管水泵工作转速不变,但只要管网特性发生变化(曲线②变为曲线③),那么水泵的工作点是发生变化的,其流量和压力也随之变化。换言之,水泵的输出压力并不只是转速的单值函数。
在自来水行业,流量的减少是因为夜间用户关阀,管网特性曲线发生了变化,曲线②变为曲线③,流量由Q1降为Q2。为了防止管网水压的上升威胁到管网安全,可以调节水泵出口阀门或者改开小泵。
在一些化工生产、制冷等行业,流量的减少是因为生产工艺的需要,这时可以调节水泵输出阀门,人为改变管网特性,使水泵工作点由A点变到B点,从而达到主动调节流量的目的。
图(2)
图(2)示出了水泵调速运行时,水泵工作特性的变化情况,曲线①②③分别为水泵按N1 、N3和N2三种速度运行时的特性曲线,曲线④⑤为管网特性曲线。如果管网特性不变,保持为曲线④,水泵由N1转速调节到N2速运行时,水泵的工作点将由A点变到B点,流量和水压分别变到Q2和H2,它们都随着转速的下降而下降。负载特性不变时,水泵的流量Q、水压H、轴功率P和转速N之间满足如下关系:
Q∝N,H∝N2,P∝N3。
但如果是外界因素导致管网特性发生变化(由曲线④变为曲线⑤),使得流量减少为Q2,但又要维持水压不变,这时水泵可以将速度调节到N3运行,从工作曲线中可以看出,水泵的转速和输出流量下降,但水泵的输出压力却保持不变,这就是为什么流量变化时,可以通过调节水泵转速实现恒压供水的理论依据。这种情况下,由于管网特性的改变,水泵的流量Q、水压H、轴功率P和转速N之间不再满足Q∝N、H∝N2、P∝N3的关系,并不是转速下降其水压就下降,水泵速度下降且其分担的流量下降后,只要其输出水压不变,就可以和其他高速水泵并联运行。
3、水泵调速运行的轴功率
3.1管路特性不变
管路特性不变时,水压随流量的变化而变化,调速时只对流量作要求,对水压不作要求,这时水泵的工作情况如图(3)所示:
图(3)
从图可见,需要流量下降时,将水泵速度由N1下调为N2,则水泵工作点由A点变为B点,流量由Q1变为Q2,压力由H1变为H2,水泵在A、B两个工作点的输出功率PA和PB分别为: PA=H1×Q1, PB=H2×Q2
从上式看出,如果转速降为50%,则水泵输出功率下降为12.5%;如果在A、B两点水泵的效率差别不大,则水泵的输入功率也大大下降。
3.2调速时要求水压恒定
图(4)
在图(4)这种工况下,水泵速度由N1调到N2,工作点由A点变到B点,流量由Q1变到Q2,水压保持不变,H1=H2。水泵在A、B两点的输出功率PA=H1×Q1,PB=H2×Q2。
PAPB = H1×Q1H2×Q2 =Q1 Q2
这种情况下,水泵输出功率和流量成正比。(注意:水泵输出功率不和转速成正比,因为管路特性已变化,Q1不正比于N1,Q2不正比于N2。)这种工况下类似自来水行业。用户用水量由Q1下降为Q2(用水量下降是用户关阀引起的管路特性发生变化,由特性曲线(1)变为曲线(2)仍需水压保持恒定。
4、水泵调速运行的节能效益
4.1管路特性不变
图(5)
外部管路特性不变。如果通过水泵调速方式改变流量,按工作点由A点降到B点;如果水泵定速运行,通过阀门改变流量,则水泵从A点变为C点。水泵在
B、C两工作点的输出功率和输出功率差分别为:PC=H3×Q2, PB =H2×Q2; 假设水泵在B、C两点效率差别不大,都约为η,则调速方式相对于关阀方式,节能效益 ΔP=(H3-H2) Q2 η 。
4.2管路特性变化而调速时要求水压恒定
图(6)
流量由Q1变为Q2时,如果水泵定速运行,工作点将由A变为C点;如果通过调速方式,水泵工作点将由A变为B点。水泵在B、C两点的输出功率差为: PC
-PB=(H3-H2)×Q2。假设水泵在B、C两个工作点的效率差别不大,都为η,则水泵输入功率差
ΔP=(H3-H2) Q2 η 。
5、水泵调速运行节能效益计算实例
水泵调速节能效益与水泵的特性、运行方式、电费水平等多种因素有关,由于这些因素在不同场合下千差万别,计算节能效益时对工况作如下假设:
水泵功率为1000KW,年运行时间8000小时,其中1600小时(即20%时间)为100%流量,4000小时(即50%时间)为70%流量,2400小时(即30%时间)为50%流量,调速装置效率为96%,假设水泵流量Q和压力H在采用阀门调节流量时近似满足如下关系:H=A-(A-1)Q2,其中A为水泵出口封闭时的出口压力,假设为140%,假设电费为1元/度。
5.1采用阀门调节时电耗计算
采用阀门调节流量时,功耗等于流量Q和压力H的乘积。各种流量的功耗计算如下:
P100%=1000KW
P70%=1000×0.7×(1.4-0.4×0.7×0.7)=842.8KW
P50%=1000×0.5×(1.4-0.4×0.5×0.5)=650KW
电费计算如下:1000×1600+842.8×4000+650×2400=6531200度,一年电费约653万元。
5.2采用调速且要求水压恒定时电耗计算
采用调速水泵调节流量时,如果需要压力恒定,则功耗仍然按流量Q和压力H的乘积计算。各种流量的功耗计算如下(其中0.96为调速装置效率): P100%=1000/0.96=1041KW
P70%=1000×0.7×1/0.96=729KW
P50%=1000×0.5×1/0.96=521KW
电费计算如下:1041×1600+729×4000+521×2400=5830000度,一年耗电费约583万元。
流量变化时,如果要求压力不变,相对于用阀门调节流量,采用变频器调节流量后,一年可以节省电费约653-583=90万元,节电量约为13.8%。
5.3采用调速且管路特性不变时的电耗计算
采用调速水泵调节流量时,如果没有压力要求,即假定外部管阻特性不变,则功耗正比于流量的立方。各种流量的功耗计算如下(其中0.96为变频器效率): P100%=1000KW
P70%=1000×0.73/0.96=357.3KW
P50%=1000×0.53/0.96=130.2KW
电费计算如下:1000×1600+357.3×4000+130.2×2400=3341680度,一年
耗电费约334.1万元。
流量变化时,如果外部管阻特性不变(即流量小时,压力也小,调速时对压力不作要求),相对于用阀门调节流量,采用变频器调节流量后,一年可以节省电费约653-334=319万元,节电量达到48.8%。
从计算中可以看出,如果水泵依据流量需求而调速,对水压不作要求的工况,其节能效果大大好于要求水压恒定的工况。仿照以上计算方法,用户可以根据自己实际的水泵容量、供水工况及电费水平,直接预估出调速后的节能效益。
6、调速泵和工频水泵的并联运行
6.1多泵并联时,调速泵实现流量调节的图示
水泵不管全速运行或调速运行,总满足以下的特性关系:
图(7)
图(7)中绘出水泵分别以不同速度 (n1>n2>n3>n4)运行的H_Q特性曲线,纵坐标H表示水泵出口水压,横坐标Q代表水泵流量。从H_Q曲线看出:
a水泵定速运行时,如果其流量减小,水泵出口水压将增大。如A、B两点,水泵以恒定速度n1运行,当该泵流量由 Q2下降到Q1时,该水泵出口水压将由H2上升到H1。
b如果水泵的流量相同,水泵高速运行时的出口水压高于低速运行时出口水压。如A、D两点。
c水泵降速运行时,如果其流量比高速运行时减小,则可以和高速运行时有相同的出口水压值。如B、C两点。
两台一样的水泵,分别以不同速度运行,如果各自流量不同,仍可以有相同的出口水压值,可以直接并联运行。
假如当前管网总流量为Q2+Q3,管网水压为H2,由两台水泵并联供水(多台并联时很容易类推)。定速泵以n1速度运行,达到出口压力H2时提供的流量为Q2,运行于B点。调速泵以n2速度运行,达到出口压力H2时提供的流量为Q3,系统达到平衡。
如果由于工况变化,管网总流量变为Q2+Q4,仍要保持管网水压为H2,由两台水泵并联供水(多台并联时很容易类推)。定速泵还以n1速度运行,达到出口压力H2时提供的流量为Q2,运行于B点。而调速泵降速到n3速度运行,达到出口压力H2时提供的流量为Q4,运行于E点。系统达到新的平衡。
在以上两种工况中,两台水泵的出口压力也完全一致,直接并联运行,不会有所谓的内耗存在。
高压泵的工作原理:
高压泵是利用与传动轴平行的柱塞在柱塞孔内往复运动所产生的容积变化来进行工作的。由于其柱塞和柱塞孔都是圆的,加工时可以贴合很紧,达到较高的精度配合,所以高压泵的容积效率高,运转平稳,噪音低,工作压力高等优点。
高压泵的分类及用途:
1、高压柱塞泵
高压柱塞泵适用于石油、化工、化肥工业作为流程用泵、冶金、轧钢厂的高压水除鳞、建筑、造船、制糖、造纸、化工等工业的高压水清洗除垢、油田注水、锅炉给水、液压机械的动力源,以及食品、制药等需要产生高压液体的部分,输送介质为无固体颗粒的流体。
高压柱塞泵包括高压三柱塞泵,此泵全部为卧式,它比立式更稳、振动小、装拆、维修方便。也叫三缸泵,具有均匀的流量,压力脉动也相应减小。
2、高压往复泵
高压往复泵适用于:清洗泵、流程泵、尿素铜液泵、基甲酸氨液二甲泵、食品均质泵、洗涤剂料浆泵、氨水泵、料浆泵、五钠泵、增压泵、注水泵、除鳞泵、输油泵、除锈泵、高压水雾化
组装型式:有卧式、固定式、移动式。
传动型式:有电动机、柴油机、齿轮箱、皮带轮、电磁调速、变频调速。每个品种的泵都装有安全调压阀,泵的压力可任意调节。泵体材料有合金钢、马氏体、奥氏体不锈钢、316、316L双相钢。
高压电动试压泵
高压电动试压泵继承了老试压泵优点,具有“三化”程度高、使用寿命长、
3、高压电动试压泵
性能稳定、操作方便、移动灵活、重量轻等优点,供各类压力容器、管道、阀门和蒸气锅炉等作水压试验和室中获得高压、液体等,在试压的初始阶段具有较大流量,能迅速充液和升压,以缩短试验时间。当压力超过0.6Mpa后,为使试压过程能较平稳而缓慢地进行,则流量自动减少,此泵在高低压时有两种流量,并能自动变换,凡在额定排出压力以下,可进行任意数值的水压试验。
4、高压清洗泵
清洗泵是一种高效、节能的清洗设备,用于化工厂、热电厂、糖厂、造纸厂等行业热交换器或反应釜和各种管道的清圬,也可用于铸件清砂,各种车辆、飞机、轮船、屠宰场等清洗,通过配置附件又可作水喷砂,从而克服了气喷砂所造成的环境污染,影响人身健康等缺点,为搞好环境保护工作创造了条件。
该泵配有各种喷嘴,以适应各种不同用途,并装在有四个轮子的平板车上或小艇上以适应各种不同场合的需要。整机装在拖板车上用人力即可拖动,车上除泵外、还有电机、电控箱、滚动架和高压软管,在防爆场合可配防爆弄电器设备。
1、高位水箱并列供水方式:在各分区独立设水箱和水泵,水泵集中设置在建筑底层或地下室,分别向各区供水。
优点:
1)各区是独立系统,供水安全可靠
2)水泵集中,管理维护方便
3)运行动力费用经济。
缺点:
1)水泵数量多,高压管线长,设备费用增加
2)分区水箱占用建筑面积,影响经济效益。
2、高位水箱串联供水方式 :水泵分散设置在各区的楼层中,低区的水箱兼作上一区的水池。
优点:
1)无高压水泵和高压管线
2)运行动力费用经济。
缺点:
1)水泵分散设置,占用较大面积,管理维护不便
2)防震、隔音要求高;
3)供水可靠性差
3、减压水箱供水方式:整个高层建筑的用水量由底层水泵提升至屋顶总水箱,然后再送至各分区减压水箱。
优点:
1)水泵数量少,设备费用低,维护管理简单
2)泵房面积小,减压水箱容积小。
缺点:
1)水泵运行动力费用高
2)屋顶水箱容积大,对建筑结构不利
3)供水可靠性差 ;
1、发动机供油提前角自动调节器的作用是为了使反动机在不同转速下供油提前角度能使燃油燃烧更加充分,为什么正确的供油提前角能使燃油充分燃烧的原理想必你已明确,不赘述。自动调节器工作原理现在已有多种,本人只说离心式,原理同高压泵调速器,但结构不一样,差别还比较大,他要用发动机高速运转产生的离心力驱动凸轮轴相对正时齿轮轴产生一个角位移,达到提前供油的目的,反之,发动机转速下降时,离心力减小,角位移方向相反,供油相对滞后,当然调节角度范围很小,多数只有8度左右.
2、供油提前角的作用与调节器的作用是完全不同的,高压泵调节器也称速度调节器,它调节的是供油量的大小,严格地说手油门控制的是速度范围,调节器的任务是根据速度的设定调节实际供油量,实现预设速度。供油提前角调节器的作用是根据发动机转速,确定活塞在上止点前适当位置供油,可以说它的作用是改变正时齿轮原设定的供油时间的。
高压电机使用变频控制,即变频电动机,主要优缺点如下:
1、优点:平衡质量高,震动等级为R级(降振级)机械零部件加工精度高,并采用专用高精度轴承,可以高速运转;强制通风散热系统,全部采用进口轴流风机超静音、高寿命,强劲风力。保障马达在任何转速下,得到有效散热,可实现高速或低速长期运行。
2、缺点:电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题;为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
扩展资料:
变频电机的工作原理:
主电路是给异步电动机提供调压调频电源的电力变换部分,变频电机的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频电机,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频电机,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
参考资料来源:
百度百科-变频电动机
自动增压泵的自动开关是通过检测流经开关的水流压力来控制增压泵的开和关,也就是说,当你拧开家中的水龙头,按装在水管主管上的自动开关就有水流过,水流产生的压力被自动开关检测到,就会启动增压泵。
原理
1、压差式:压差式控制器有三个触点,分别是上限压力触点、公共触点和下限压力触点,使用时别定义好上限停机压力值和下限启动压力值,正常运行后,管网压力达到上限触点时,控制器反馈给控制系统,在各种电气元件配合下,增压泵断电停机保压;当用水导致管网压力持续下降至下限压力触点时,控制器反馈给系统,增压泵重新上电增压。如此循环,达到自动增压的目的。
2、水位式:水位式控制器就是我们常说的浮球开关,依然有三个触点(满水点、公共点、缺水点)。浮球开关在朝下(缺水)和朝上(满水)两个状态时分别可以反馈开机和停机两个开关信号。当装水的水池满水后,浮球被浮上来了处于朝上的状态,此时便反馈给控制器一个停机断电信号,增压泵便停止运行;
反之,里面水少了或缺水了,浮球状态改变了,变反馈开机信号给增压泵重新开机抽水。如此往复循环......
3、变频式:变频是基于闭环控制系统的,所谓闭环控制就是根据控制对象输出反馈来进行校正的控制方式,它是在测量出实际与计划发生偏差时,按定额或标准来进行纠正的。闭环控制,从输出量变化取出控制信号作为比较量反馈给输入端控制输入量,一般这个取出量和输入量相位相反,所以叫负反馈控制,工业化自动控制通常是基于闭环控制理念的。
简单的说,变频水泵的闭环控制原理就是通过对比【实际设定目标压力值】与【当前实际检测到的压力值】进行对比,通过一些列函数算法将这个差值更改到趋近与零即可。在水泵设备的变频调速过程中,当水压下降速度快时,变频器调速过程就加快,反之则变慢。在流量扬程达标的情况下,变频控制模式的输出压力可以始终是恒定的。
扩展资料增压泵工作原理
先将增压泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。
气液增压泵工作原理类似于压力增压器,对大径空气驱动活塞施加一个很低的压力,当此压力作用于一个小面积活塞上时,产生一个高压。通过一个二位五通气控换向阀,增压泵能够实现连续运行。
由单向阀控制的高压柱塞不断的将液体排出,增压泵的出口压力大小与空气驱动压力有关。当驱动部分和输出液体部分之间的压力达到平衡时,增压泵会停止运行,不再消耗空气。当输出压力下降或空气驱动压力增加时,增压泵会自动启动运行,直到再次达到压力平衡后自动停止。采用单气控非平衡气体分配阀来实现泵的自动往复运动,泵体气驱部分采用铝合金制造。
接液部分根据介质不同选用碳钢或不锈钢。一般泵都有进气、排气两个口,在进气口能产生低于常压(即大气压)气压的叫“负压”;在排气口能产生高于常压气压的叫“正压”;比如常说的真空泵就是负压泵,增压泵就是正压泵。正压泵跟负压泵有很大的不同。比如气体流向,负压泵是外部气体被吸入到抽气嘴;正压是从排气嘴喷出去;比如气压的高低等。
参考资料:百度百科 增压泵
原因在于,高压油泵发生故障,无法向调节保安系统供油,主汽门和调节气门无法控制开度。
1、如果有三根引出线用万用表测三次电阻最大两根是两相绕组串联,剩下一根是两绕组的并头也是公共端。最小的是主绕组,其次是副绕组也算起动绕组,主绕组一头直接接相线,零线接公共端,剩下一头经过电容接相线,如果四个引出线那就麻烦点,原理是一样的。
2、主绕组接和副绕组有一端直接接在一起是泵的一根线,这个线是主副绕组的公共端,假如记为C,另外两线一个是主绕组和副绕组接线端,分别标记为A和B。
3、取ABC任意两线待用,剩下一根线不用并且用胶布包上,防止漏电伤人。找个家用鼓风机(电风扇也可以,但是要调到最大风速度档),在它的电源进线上,把泵没有包的两线串进去,就是把水泵的两根线当作一个保险或者限制速器串接进鼓风机的任意一根电源线去即可.
4、当然接头临时用胶布包好,然后给鼓风机加电,看其转速或者说风量大小,更换水泵的不同两线,最后发现有一次,转速最小,风量最小,那么就可以确定,这次接入的线头就是水泵的主绕组和副绕组接线端A、B,此时把水泵的这两线分别接电容的两线(当然之前要把鼓风机的线路恢复)。
5、把水泵没有接电容的那根线接水泵电源的零线并且包好;水泵的电源线的火线,接A或者B任意一个位置,通电试验,观察水泵转向,调换与火线接的接A或者B,当水泵转向正确时,这次接线就完全正确了,把所有接线头用胶布包好后就可以投入使用了。
扩展资料:
一、用途
1、供水:水厂过滤与输送、水厂分区送水、主管增压、高层建筑增压。
2、工业增压:流程水系统、清洗系统、高压冲洗系统、消防系统。
3、工业液体输送:冷却和空调系统、锅炉给水和冷凝系统、机床配套、酸性和碱性介质输送。
4、水处理:超滤系统、反渗透系统、蒸馏系统、分离器和游泳池的水处理系统。
5、灌溉:农田灌溉、喷灌、滴灌。
二、优点
1、不漏水,磁力传动没有动密封件,从根本上消除了漏水问题;
2、噪声小,关键零件的精度达到千分之二毫米,确保静音性能;
3、寿命长,采用镜面陶瓷及陶瓷纳米轴承抗磨损,确保长寿命;
4、耗电少,由于匹配合理,电机功率很小,每小时电费约一分钱;
5、对水质要求低,循环水中若含有微小杂物不影响循环泵工作;
6、具有防烧功能,水泵万一被杂物缠绕住,不会因过载损坏电机。
参考资料:百度百科-循环泵