水泵节电系统能省电吗?
要看你的水泵流量,如果出水量是设计刚好的,没有一点多余空间,比如说水泵24小时在运行,用水的地方也是24小时再用水,那就没有必要节电,如果说用水的地方有5-10小时基本没有用水,那还是有必要改的,实际像这样加个变频器就可以了,不过大功率水泵变频器很贵,要找专业人士帮你算出什么时候可以把投入的钱收回,如果说1-2年还有必要,要是3-5年回收成本,那就没必要了,3-5时间,节电系统会慢慢老化,到时再检修,再更换,那就得不偿失了,做个参考吧
中央空调运行成本,一直以来是一个难以避免的话题,一般来说中央空调属于用电大户,因此很多采购中央空调的用户,都会选择节能改造,以期望在使用过程中实现节能目的,效果也的确很好,本文给大家介绍的是中央空调的水泵节能改造,属于中央空调节能改造的一部分。
1、一般中央空调的冷冻水循环泵配置余量很大,有很大的节能潜力,对之进行改造后,多数能达到节能20%以上。
2、提高空调机组的制冷效率,主要是从两方面提升效率,一个是避免因为冷却水循环泵满负荷运转导致的制冷周期的前期、后期的环境温度低,冷却水回水温度低,特别是溴化锂机组由于冷却水温低可能引发的溴化锂结晶,从而触发的效率低甚至于自我保护功能二是避免冷冻水循环泵满负荷运转,不能根据室内温度情况进行调整,不能实现调节流量,浪费能源。
3、减少空调开机、停机时候,对供电系统的冲击,这主要解决(1)循环水泵的功率大,满负荷运转的时候,开机关机,对电网冲击较大(2)减小甚至消除停泵时循环水的水垂效应,消除水垂对空调系统管网的冲击。
4、降低设备的故障率,中央空调循环水泵采用变频控制后,循环水泵大部分时间工作在额定功率以下,这将有力的降低设备的故障率,减少设备维修和维护。
5、提高设备的自动化程度(1)实现对循环泵的过载、过流保护(2)对冷水机组的冷却水、冷冻水的温度进行自动控制,保证机组的安全高效运行。
进入新世纪以后,真正的“水泵智能控制系统”不再是“变频器”控制技术的演变。在有效利用变频器的同时,水泵节电控制技术还加入了PLC、人机界面、滤波等等,都加入其中,使水泵节电更具科学化、智能化。
采用交流变频技术控制冷冻/冷却泵的运行,是目前中央空调系统节能改造的有效途经之一。
泵的负载功率与转速成3次方比例关系,即P∝N3,其中P为功率,N为转速;可见用变频调速的方法来减少水泵流量的经济效益是十分显著的,当所需流量减少,水泵转速降低时,其电动机的所需功率按转速的三次方下降。例如:
A. 当水泵流量下降10%(跟踪输出频率为45Hz)
则电动机轴功率P′=(0.9)3P=0.729P 即节电率27.1%
B. 当水泵流量下降30%(跟踪输出频率为35Hz)
则电动机轴功率P′=(0.7)3P=0.343 即节电率65.7%
当冷水机负荷下降时,所需的水流量减少,通过电动机的调速装置降低泵的转速来减少水的流量,泵的轴功率相应减少,电动机的输入功率也随之减少。当用冷量增加,冷机负荷量增大,冷凝器进出水温差增大,变频器运行频率增加,水泵转速加快,水流量增加,从而维持温差恒定。反之亦然。从而达到理想的节能效果。
节电控制原理:
保瓦博士变频中央控制器通过温度模块及温度传感器将冷冻/冷却泵的回水温度和出水温度读入内存,并计算出温差值;然后根据其温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高,应提高冷冻/冷却泵的转速,加快冷冻/冷却水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,可降低冷冻/冷却泵的转速,减缓冷冻/冷却水的循环速度和流量,减缓热交换的速度以节约电能;变频器的启动、停止、运行频率的改变及监控显示数据如变频器输出功率、变频器输出频率、输出电流,输出电压等都是由变频中央控制器通过485通信协议实现的。
采用变频技术控制水泵的运行,是目前中央空调系统节能改造的最有效途径之一,图(2)和图(3)绘出阀门调节和变频调速控制两种状态的压力-流量(H-Q)关系及功率-流量(P-Q)关系。
图(2) H- Q图(3) P- Q
图(2)、曲线1是水泵在额定转速下的H-Q曲线,曲线2是水泵在某一较低速度下的H-Q曲线,曲线3是阀门开度最大时的管路H-Q曲线,曲线4是某一较小阀门开度下的管路H-Q曲线,可以看出,当实际工况流量由Q1下降到Q2,如果在水泵以额定转速运行的条件下调节阀门开度,则工况点沿曲线1由A到B;如果在阀门开度最大的 条件下采用变频调节水泵转速,则工况点曲线3由A点移动C点,显然B点与C点的流量相同,但B点的压力比C点的压力要高很多。
图(3)、中曲线5为变频控制水泵调速运转方式下的P-Q曲线,曲线6为阀门调节方式下的P-Q曲线,曲线6为阀门调节方式下的P-Q曲线,可以看出在相同流量下,变频控制方式比阀门调节方式能耗小,根据离心泵的特性曲线公式
P=QHR/102η 式 (1)
式中:P- 泵使用工况轴功率(KW)
Q- 工况点的水压或流量(m³/S)
H- 工况点的扬程
R- 输出介质单位体积重量(Kg/ m³)
η- 泵功率
根据公式(1)可知运行在B点泵的轴功率为:PB=Q2H2R/102η
C点泵的轴功率为:Pc=Q2H3R/102η
两者之差为η:ΔP=PB-PC=Q2(H2-H3)R/102η
也就是说,用阀门控制流量时,有ΔP功率被浪费掉了,并且随着阀门不断关小,这个损耗还要增加,而且转速控制时,由流体力学可知,流量与转速N的一次方成正比,压力H与转速N的平方成正比、功率P与转速的立方成正比。即
Q/Qe=N/Ne H/He=(N/Ne)² P/Pe=(N/Ne)³ 式(2)
式中:Qe-额定流量
He-额定压力
Pe-额定功率
Ne-额定转速
由上面的公式可知,如果泵类负载的效率一定,当要求调节流量下降时,转速可成正比例下降,此时水泵的轴功率与之成立方倍关系下降。
由上述流体传输设备水泵、风机的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的功率。例如:将供电频率由50Hz降为45Hz,则P45/P50=453/503=0.729,即P45=0.729P50(P为电机轴功率);将供电频率由50Hz降为40Hz,则P40/P50=403/503=0.512,即P40=0.512P50(P为电机轴功率)。见图(4)
图(4)
由以上内容可以看出,用变频器进行流量(风量)控制时,可节约大量电能。中央空调系统在设计时是按现场最大冷量需求量来考虑的,其冷却泵,冷冻泵按单台设备的最大工况来考虑的,在实际使用中有90%多的时间,冷却泵、冷冻泵都工作在非满载状态下。而用阀门、自动阀调节不仅增大了系统节流损失,而且由于对空调的调节是阶段性的,造成整个空调系统工作在波动状态;而通过在冷却泵、冷冻泵上加装变频器则可一劳永逸地解决该问题,还可实现自动控制,并可通过变频节能收回投资。同时变频器的软启动功能及平滑调速的特点可实现对系统的平稳调节,使系统工作状态稳定,并延长机组及网管的使用寿命。
由于系统中的许多环节,特别是温度、水泵、冷水管道、都存在着非线性,故变频节能系统的调节方式一般采用的PID调节方式。从PID控制的原理可知,带有积分(I)调节器的系统,具有很高的稳定精度,再由于水系统中的瞬间扰动不大,实际中可仅采用PI调节方式。冷冻和冷却水系统温度有变化时,PID闭环会对出现的偏差进行不断的修正,使变频器根据PI调节器或内置PID运算不断地进行调节(加速或减速),使水泵工作在最佳工作状态。
我们在系统设计时采用闭环PID调节方式,并结合模糊控制理论的最新成果。模拟人的思维方式,对一些无法构造数学模型的被控对象进行有效的控制;模糊智能控制不会出现超调现象(见上图),故系统的节电率会有所提高;当系统有干扰信号时,能快速响应外部扰动(见上图),因此模糊系统抗干扰能力很强;中央空调的水泵变频运行采用模糊数字控制后,其智能化程度会进一步提高、系统的抗干扰能力会得到加强、节能效果也会有所提高。
变频调节就是利用改变性能曲线方法来改变设备的工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。
可参考我文库里的文章:http://wenku.baidu.com/view/042cbf146c175f0e7cd137a3.html