建材秒知道
登录
建材号 > 水泵 > 正文

水泵的结构组成

跳跃的大山
无辜的火车
2023-01-01 13:12:19

水泵的结构组成?

最佳答案
贪玩的酒窝
结实的火
2025-08-18 17:56:09

大家都知道多级泵是水泵的一种,那么水泵是什么?有什么用途?简单来说,水泵是一种通过一系列组合装置把原动机的机械能转化成使液体增加压力来达到提升液体、输送液体目的的一种电动机械设备。水泵按工作原理和结构形式可以分为:叶片式泵、容积泵和其它泵,叶片式泵又分为:离心泵、漩涡泵、混流泵、轴流泵,而多级泵就属于离心泵的一种。

离心泵是通过泵的转子部分的高速旋转产心的离心力来甩出或传递介质到出口管道。离心泵的转子最主要由两大部件组成,一个是叶轮,二是泵轴,泵轴通过联轴器和电动机连接,提供动力,而叶轮就是用来甩水的部件,业内用“级”来表示叶轮的数量,讲到这里,大家应该就明白了,多级泵就是配有多个叶轮的离心泵,全称多级离心泵,简称多级泵。多级泵按结构形式和工作原理,市场上目前主要有自平衡多级泵、普通卧式多级泵、多级中开泵、立式多级泵,几种多级泵,接下来分别介绍这几种多级泵的结构图及结构组成。

一、自平衡卧式多级泵

DP型自平衡多级泵图片

DYP自平衡多级油泵图片DF耐腐蚀不锈钢多级泵

MDP自平衡矿用耐磨多级泵图片GDP自平衡多级锅炉给水泵图片

二、普通卧式多级泵

D型普通多级泵图片

DG型多级锅炉泵图片DF耐腐蚀多级泵图片MD矿用耐磨多级泵图片(客户使用中)

DY型多级油泵图片

三、立式多级泵

gdl立式多级泵(管道泵)

cdl/cdlf不锈钢立式多级泵

四、卧式中开式多级泵

dk中开式多级泵

以上就是长沙中联泵业为大家展示的部分多级泵图片,更多级泵图片,欢迎到https://www.zbpumps.com/查看。接下来介绍以上几种多级泵的结构图及结构组成。

一、自平衡多级泵结转构图

自平衡多级泵剖面结构图自平衡多级部结构示意图

自平衡多级泵结构组成及特点

1、定子部分:主要由吸入段(进水段)、中段、吐出段(出水段)、导叶、次级进水段、填料函体(尾盖)和轴承体等分别用拉紧螺栓联接成一体,中段由高强度的穿杠螺栓和进出水段联接。泵的进水段、中段、出水段之间的密封面均采用二硫化钼润滑脂金属面硬密封。

2、转子部分:主要由轴、叶轮、节流轴部件、轴承及轴套等组成。正、反两组叶轮对称布置轴中心的两端,在运行中产生的轴向推力可以通过正、反叶轮基本抵消,无需采用平衡盘结构就能实现泵腔内巨大轴向推力的自动平衡,残余轴向力由一对背靠背的角接触轴承承受。

3、泵的密封

3.1泵吸入段(进水段)、中段、吐出段(出水段)、次级进水段之间的静止结合面用密封胶或二硫化钼来密封。

3.2泵各级间采用节流密封。

3.3泵的两侧轴封采用软填料密封。

3.4采用挡水圈挡水,防止水进入轴承。

4、轴承部分

自平衡多级泵型的整个转子由驱动端的圆柱滚子轴承《GB/T283-94》、末端采用《GB/T292-94》角接触球轴承支撑,轴承采用CD30或CD40机械油加入轴承体内至油镜中心润滑。由于轴承采用了《GB/T292-94》角接触球轴承,所以组装完成的泵转子无轴向窜动量。

二、平衡盘结构多级泵(简称普通多级泵)结构图

普通卧式多级泵结构图

普通卧式多级泵剖视结构图

普通多级泵结构组成及特点

普通多级泵的泵体部分有:进水段(低压端)、中段(含导叶)、出水段(高压端内嵌平衡环)、尾盖组成;转子部件有:主轴、叶轮、护轴套、平衡盘、平衡套、轴承挡套、叶轮挡套等主要零部件组成。

1、D型卧式多级泵为多级分段式,其吸入口位于进水段上,成水平方向,吐出口在水段上垂直向上,其扬程可根据使用需要而增减水泵级数。水泵装配良好与否,对性能影响关系很大,尤其是各个叶轮的口出与导翼的进出中心,其中稍有偏差即将使水泵的流量减少,扬程降低效率差,故在检修装配时务必注意。

2、D型卧式多级泵主要零件有:进水段、中段、出水段、叶轮、导翼挡板、出水段导翼、轴、密封环、平衡环、轴套、尾盖及轴承体。

进水段、中段、导叶挡板、出水段导翼、出水段及尾盖均为铸铁制成,共同形成泵的工作室。

3、D型卧式离心水泵叶轮为优质铸铁制成,内有叶片,液体沿轴向单侧进入,由于叶轮前后受压不等,必然存在轴向力,此轴向力由平衡盘来承担,叶轮制造时经静平衡试验。

4、轴为优质炭素钢制成,中间装有叶轮,用键、轴套及轴套螺母固定在轴上。轴的一端装联轴器部件,与电机直接连接。

5、D型卧式离心水泵密封环为铸铁制成,防止水泵高压水漏回进水部分,分别固定在进水段与中段之上,为易损件,磨损后可用备件更换。

6、平衡环为铸铁制成,固定在出水段上,它与平衡共同组成平衡装置。

7、D型卧式离心水泵平衡盘为耐磨铸铁制成,装在轴上,位于出水段与尾盖之间,平衡轴向力。轴套为铸铁制成,位于填料室处,作固定叶轮和保护泵轴入用,为易损件,磨损后可用备件更换。轴承是单列向心球轴承,采用钙基润滑脂润滑。

三、GDL型立式多级泵结转构图

GDL立式多级泵结构图

GDL立式多级泵结构特点

1、GDL型立式多级泵为立式结构,具有占地面积小的特点,泵重心重合于泵脚中心,因而运行平稳、振动小、寿命长。

2、GDL型立式多级泵口径相同且在同一水平中心线上,无需改变管路结构,可直接安装在管道的任何部们,安装极为方便。

3、电机外加防雨罩可直接置于室外使用,而无需建造泵房,大大节约基建投资。

4、GDL型立式多级离心泵扬程可通过改变泵级数(叶轮数量)来满足不同要求,故适用范围广。

5、轴封采用硬质合金机械密封,密封可靠,无泄漏,机械损失小。

6、高效节能,外形美观。

7、注50口径以上内件铸件成形。

四、DK型中开式多级泵结转构图

1-泵盏 2-泵体 3-轴承体 4-轴套 5-叶轮 6-泵轴 7-轴封装置

DK中开式多级泵结构特点

DK型多级中开泵为水平中开。泵吸入口和吐出口均位于泵中开面下方泵壳下部,水平地位于两侧与轴心线成垂直方向,检修时无须拆下电机和管路,操作十分方便。轴的支承有滚动轴承和滑动轴承。滚动轴承的除100DK230和250DK240型泵为稀油润滑外其余均为油脂润滑,250DK360型泵为滑动轴承稀油强制循环润滑(配有稀油站)。泵轴封可为填料密封或机械密封。

旋转方向:从电机端看,250DK240,250DK360型泵为逆时针方向旋转,即吸入口在左,吐出口在右。其余均为顺时针方向旋转。

零件材质:250DK360为铸钢和铸不锈钢,其它均为铸铁。

成套范围:成套供应泵、电机、底座、止回阀、闸阀。

最新回答
外向的篮球
勤恳的蜡烛
2025-08-18 17:56:09

无密封自控自吸泵就是泵在启动前无需加引水或抽真空,启动后经短暂时间运转,依靠泵本身的作用,把水吸上来并正常运行的一种泵。

工作原理:自吸泵的主要水力元件叶轮和泵壳与一般离心泵相似,泵腔内增加了储液室和气水分离室。WFB型无密封自吸泵,无密封应该为副叶轮动力密封,又称为流体动力密封。它可以克服填料密封及机械密封的某些不足,可以确保无泄漏。

WFB型无密封自控自吸泵主要由泵体、工作叶轮(主叶轮)、副叶轮、泵轴、电机支架、电控阀、停车止回阀等装置组成。工作原理为气液混合式,在泵运转前,泵体内存在一定量的液体,泵启动后,由于工作叶轮的旋转作用。

使进液管内的空气与泵体内的液体充分混合,并被排到气液分离室,气液分离室内的空气从上部逸出,液体从下部返回叶轮进口,重新和进液管的剩余空气混合,不断循环,直到把进液管内的空气全部排尽,完成自吸。

副叶轮动力密封原理:副叶轮在工作叶轮上部,运行时和工作叶轮一起旋转,其作用是减低泵腔的压力,达到平衡轴向力和防止液体进入密封装置。副叶轮其实是依靠压力顶住工作叶轮出口处的高压液体向外泄漏,停机时副叶轮不起作用,所以应配备停机密封,防止泵腔水外流。

扩展资料:

因WFB型立式自吸泵的泵腔内水力损失比一般离心泵要大,所以配用功率相对较大,WFB无密封自控自吸泵的电控阀作为自吸泵的组成部分之一装在吸液口的进气管上,启泵时电控阀密闭泵体吸液管上的进气口,使自吸泵泵腔内形成真空,完成自吸全过程。

停泵时电控阀开启,空气从密闭口进入水泵液管内迅速隔离吸液管内共流的介质,确保泵腔的介质不随吸液管腔内的介质回落到吸液池中,以达到消除虹吸的目的,确保自吸泵二次自吸时正常自吸及运行,自吸泵停机后出口止回阀靠回水重力关闭,使泵腔内液体不会流出。

开心的画笔
开朗的季节
2025-08-18 17:56:09
图一是一台典型的立式多级轴流水泵,这种泵的工作原理是,当电机旋转时,通过泵体和叶轮的结构,各级独立加压,使压力逐步升高,与单级轴流泵比较这种泵的特点是压力高但流量小,通常分进水口和出水口,并且有旋转方向要求,图二没见过,不敢妄言,希望能对你有所帮助。

优雅的大树
瘦瘦的茉莉
2025-08-18 17:56:09
离心泵的工作原理:在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下甩向外围,流进泵壳,使叶轮中心形成真空,液体就在大气压力的作用下,由吸人池流人叶轮。这样液体就不断地被吸人和打出。在叶轮里获得能量的液体流出叶轮时具有较大的动能,这些液体在螺旋形泵壳中被收集起来,并在后面的扩散管内把动能变成压力能。

离心泵是利用叶轮旋转而使水发生离心运动来工作的。水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路。

醉熏的信封
朴实的香氛
2025-08-18 17:56:09
水泵的基本作用就是抽水,其结构的主要部件为泵壳、泵轴、叶轮、吸水管、压水管、底阀、控制阀门、灌水漏斗和泵座。水泵是通过叶轮的旋转使水产生离心力来工作的。水泵在启动前,必须向泵壳和吸水管内注满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水在离心力的作用下,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路,由于水在离心力的作用下被甩出后导致叶轮中心部位形成真空,在大气压力的作用下水池中的水就被压进泵壳内,叶轮通过不停地转动,使得水在叶轮的作用下不断流入与流出,就实现了水泵抽水的目的。

这都是利用高压气流原理抽动液态液体的流动。

叶片转动产生离心力带动水运动

失眠的汽车
聪慧的奇迹
2025-08-18 17:56:09
多级离心泵的工作原理与地面离心泵一样,当电机带动轴上的叶轮高速旋转时,充满在叶轮内的液体在离心力的作用下,从叶轮中心沿着叶片间的流道甩向叶轮的四周,由于液体受到叶片的作用,使压力和速度同时增加,经过导壳的流道而被引向次一级的叶轮,这样,逐次地流过所有的叶轮和导壳,进一步使液体的高压。

而多级偏离心泵单级离心泵包括泵体,泵盖,带输出轴的电动机装置,在泵体内安装的泵轴、轴承座、叶轮、机械密封和机封压盖结构部件,重点的特征是,它是包含有电动机的输出轴与泵轴之间有一个装置叫做对夹式联轴器,或者是安装在轴承座上的装置,叫做帮助的支承泵轴的导轴承。

土豪的毛衣
大方的小馒头
2025-08-18 17:56:09
清水离心泵供吸送清水及物理化学性质类似水不含固体颗粒的液体,广泛适用于工农业及城市、排水、消防供水等。清水离心泵根据国际标准IS02858所规定的性能和尺寸设计,其技术标准均向国际标准靠拢,达到国际先进水平。清水离心泵是我国推广的节能泵类产品之一。 清水离心泵为后开式,拆开泵盖和叶轮时不需拆卸吸水和排出管路。悬架内装有两个滚珠轴承,用机器油或润滑脂润滑。泵通过弹性联轴器由电动机直接驱动。涡室、脚、进水法兰和出水法兰铸成一个整体。

1、清水离心泵系根据国际标准ISO2858所规定的性能和尺寸设计的,主要由泵体、泵盖、叶轮、轴、密封环、轴套及悬架轴承不见等组成。 2、清水离心泵的泵体和泵盖部分,是从叶轮背面处剖分的,即通常所说的后开门结构形式。其优点是检修方便,检修时不动泵体,吸入管路,排出管路和电动机,只需拆下加长联轴器的中间联接件,即可退出转子部分进行检修。 3、清水离心泵的壳体(即泵体和泵盖)构成水泵的工作室。叶轮、轴和滚动轴承等为泵的转子。悬架轴承部件支撑着泵的转子部分,滚动轴承受泵的径向力和轴向力。 4、清水离心泵为了平衡泵的轴向力,大多数泵的叶轮前、后均设有密封环,并在叶轮后盖板上设有平衡孔,由于有些泵轴向力不大,叶轮背面未设密封环和平衡孔。 5、清水离心泵的轴向密封环是由填料压盖,填料环和填料等组成,以防止进气或大量漏水。泵的叶轮如有平衡,则装有软填料的空腔与叶轮吸入口相通,如叶轮入口处液体处于真空状态,则很容易沿着轴套表面进气,故在填料腔内装有填料环通过泵盖上的小孔,将清水离心泵室内压力水引至填料环进行密封。泵的叶轮如没有平衡孔,由于叶轮背面液体压力大于大气压,因而不存在漏气问题,故可不装填料环。 6、清水离心泵为避免轴磨损,在轴通过填料腔的部位装有轴套保护。轴套与轴之间准有O型密封圈,以防止沿着配合表面进气或漏水。 7、清水离心泵的传动方式是通过加长弹性联轴器与电动机联接的,泵的旋转方向,从驱动端看,为顺时针方向旋转

醉熏的鲜花
花痴的凉面
2025-08-18 17:56:09

叶轮旋转是b方向好。b方向水流更大。

上图叶轮是离心泵的叶轮,其工作原理是:水泵运转后叶轮高速旋转而产生的离心力的作用,叶轮流道里的水被甩向四周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。

由此可见,若离心泵叶轮不断旋转,则可连续吸水、压水,水便可源源不断地从低处扬到高处或远方。

结构特点:

1、单级立式离心泵为立式结构,进出口口径相同,且位于同一中心线上,可象阀门一样安装于管路之中,外形紧凑美观,占地面积小,建筑投入低。

2、叶轮直接安装在电机的加长轴上,轴向尺寸短,结构紧凑,泵与电机轴承配置合理,能有效地平稳泵运转产生的径向和轴向负荷,从而保证了泵的运行平稳,振动小、噪音低。

3、轴封采用机械密封或机械密封组合,采用进口钛合金密封环、中型耐高温机械密封和采用硬质合金材质,耐磨密封,能有效地延长机械密封的使用寿命。

4、安装检修方便,无需拆动管路系统。

彪壮的豆芽
爱笑的高山
2025-08-18 17:56:09
阳谷祥光铜业有限公司 发布

泵的振动测量和评价标准

1前 言本标准是根据JB/T 8097—95《泵的振动测量与评价方法》进行修订。本标准的测量方法其主要技术内容与国际标准ISO 10816–1∶1995《机械振动——在非旋转部件上测量和评价机器振动》等效。本标准的评价方法保留JB/T 8097—95的内容。对于含有挠性转子的一些泵在非旋转部件上测量是不完全合适的,须由ISO 7919–1《非往复式机器的机械振动——旋转轴的测量与评价准则 第一部分 总则》给出轴振动总则来补充。本标准的附录A是提示的附录。本标准起草单位:设备管理科本标准主要起草人:文件更改状态记录表编号:

更改日期 更改通知单编号 版本号 更改章节号 更改方式 实施日期

泵的振动测量与评价方法11 范围本标准规定了在泵的非旋转部件表面进行振动测量与评价方法。本标准适用于除潜液泵、往复泵以外的各种型式泵和泵用调速液力偶合器,转速一般为600~12 000 r/min;小于600 r/min可参照使用。2 测量2. 1 测量参数2. 1. 1 频率范围振动测量应是宽带,以便充分覆盖泵的频谱,其范围通常为10~1 000 Hz。2. 1. 2 振动值用满足第3章要求的仪器所做测量结果叫作指定测量位置和方向上的振动值。当评价泵的宽带振动时,根据经验通常考虑振动速度的均方根值,因为该值与振动能量有关。2. 1. 3 振动烈度通常在两个或三个测量方向及各个测量位置上进行测量以得到一组不同的振动值,在规定的泵支承和运行条件下所测得的最大宽带值定义为振动烈度。2. 1. 4 测量量为达到本标准的目的,可使用以下的量:A)振动位移,μm;B)振动速度,mm/s;C) 振动加速度,m/s2。一般来说,振动的宽带加速度、速度和位移之间,峰值(o–p),峰–峰值(p–p),均方根值和平均值之间没有简单的关系式,附录A(提示的附录)简要论述了理由,当振动谐波分量已知时,附录A规定了以上量的确切关系式。2. 2 泵的安装与固定2. 2. 1 现场调试当验收测试在现场进行时,支承结构应该是提供给泵的支承结构。在这种情况下进行测试,重要的是确保所有泵的相关部件和结构安装好。应该注意,同一类型的泵,在不同基础或基础底层上进行振动比较,只有当这些基础具有相似动态特性时,才是有效的。2. 2. 2 试验台测试对于多种泵,因为经济上或其它原因,验收测试在试验台上进行。试验台会具有与现场测试不同的支承结构特性。这种支承结构会明显影响所测的振动,应做各种努力以保证整个试验装置的固有频率不同于泵的旋转频率或不发生任何显著的谐振。试验装置通常满足这些要求,如在机座或在靠近轴承支承或定子座的基架上,在水平方向和垂直方向测量振动值,则不应超过在该轴承上相同方向测得振动值的50%。另外,试验装置不应引起任何主要共振频率的实质变化。

如果在验收测试中存在有显著的支承共振并且不能被消除,那么振动验收测试就必须在现场完全安装的机器上进行。2. 3 泵的运行工况在测量离心泵、混流泵、轴流泵等叶片泵的振动时,应在规定转速(允许偏差±5%)以及允许用到的小流量、规定流量、大流量三个工况点进行测量,不能在气蚀状态下进行测量。对于降低转速试验的振动测量,不能作为评价的依据。对于齿轮泵、滑片泵、螺杆泵等容积泵(往复泵除外)应在规定转速(允许偏差±5%)、规定工作压力的条件下进行测量。对液力偶合器应分别在负载、空载以及在调速范围内均匀取10个转速点进行测量,这10个点通常是最大转速的100%,90%,……10%(由于空载调速范围限制,能够测到的转速点允许不足10个。在负载试验时,对应最高转速时应达到额定负载)。2. 4 测点与测量方向每台泵至少存在一处或几处关键部位,为了解泵的振动,我们把这些部位选为测点,这些测点应选在振动能量向弹性基础或系统其它部件进行传递的地方,泵通常选在轴承座、底座和出口法兰处。把轴承座处和靠近轴承处的测点称为主要测点;把底座和出口法兰处的测点称为辅助测点。立式泵主要测点(标号是“1”)的具体位置应通过试测确定,即在测点的水平圆周上试测,将测得的振动值最大处定为测点(图8除外)。每个测点都要在三个互相垂直的方向(水平、垂直、轴向)进行振动测量。典型泵测点位置的选择如图1~图10所示,对未涉及到的类型可参照这10个图例确定其测点位置。图1为单级或两级悬臂泵,主要测点选在悬架(或托架)轴承座部位,标号是“1,2”。辅助测点是标号“3”的泵脚处(对没有泵脚的选在底座处)。图2为双吸离心泵(包括各种单级、两级两端支承式离心泵),主要测点选在两端轴承座处,标号是“1,2”。辅助测点在靠近联轴器侧面的底座处,标号是“3”。图3为多级离心泵(包括双壳体多级泵),两个主要测点在两端轴承座上,标号是“1,2”,辅助测点在靠近进出口法兰及泵脚上,标号是“3”。没有泵脚的泵,辅助测点在底座上。

图4为齿轮泵、滑片泵、卧式螺杆泵,主要测点标号是“1,2”,辅助测点标号是“3”。图5是液力偶合器,主要测点选在输入和输出轴承座上,标号“1,2”,辅助测点选在底座处,标号是“3”。图6是立式离心泵,分为以下三种:—立式多级泵,主要测点选在泵与支架联接处,标号是“1”,辅助测点在出口法兰处和地脚处,标号是“2,3”;—立式船用离心泵,主要测点选在泵与支架联接处,标号是“1”,辅助测点在出口法兰处和支承地脚处,标号是“2,3”;—立式离心吊泵、主要测点标号是“1”,辅助测点标号是“2,3”。图7为立式混流泵,立式轴流泵,分为以下三种:—单层基础,主要测点选在泵座与电动机联接处,标号是“1”,辅助测点标号是“2,3”;—双层基础,主要测点选在泵座最高处,标号是“1”,辅助测点标号是“2,3”;—泵座与电动机间有联接支架,主要测点选在支架与泵座联接处,标号是“1”,辅助测点标号是“2,3”。图8为立式双吸泵,主要测点选在两端轴承座处,标号是“1,2”,辅助测点标号是“3”。图9为长轴深井泵(包括桶袋式冷凝泵),主要测点在泵座上,标号是“1”,辅助测点在出口法兰及泵座地脚处,标号是“2,3”。图10为立式螺杆泵,主要测点标号是“1”,辅助测点标号是“2,3”。图一图二图三图四图五图六图七图八图九图十2. 5 环境振动评价如果所测振动超过推荐的限值,那么可能就有必要停机进行环境振动测量以保证其对所观察的振动不构成明显影响,当环境振动值大于推荐限值的1/3时,应采取措施减少环境振动值。3测量仪器测量仪器应该具有测量振动宽频带有效值的能力,其通频响应范围至少为10~1 000 Hz,根据振动准则可以要求进行位移或速度或者这二者结合在一起测量,但对于转速接近或低于600 r/min的泵,其通频响应范围下限应达到2 Hz。

注:如果测量仪器也用于诊断目的,频率上限有必要超过1 000 Hz。应当保证测量系统不受环境因素的影响。如:——温度变化;——磁场;——声场;——电源波动;——传感器方位;——传感器电缆长度。应特别保证振动传感器正确地被固定,而这种固定不会降低测量精度。4 泵的振动评价4. 1 评价振动烈度的尺度在10~1 000 Hz的频段内速度均方根值相同的振动被认为具有相同的振动烈度。表1中相邻两档之比为1∶1.6,即相差4dB,4dB之差代表大多数泵振动响应的振动速度有意义的变化。用泵的振动烈度查表1振动烈度级范围(10~1 000Hz),确定泵的烈度级。表一

烈度级 振 动 烈 度 的 范 围mm/s

0.11 >0.07~0.11

0.18 >0.11~0.18

0.28 >0.18~0.28

0.45 >0.28~0.45

0.71 >0.45~0.71

1.12 >0.71~1.12

1.80 >1.12~1.80

2.80 >1.80~2.80

4.50 >2.80~4.50

7.10 >4.50~7.10

11.20 >7.10~11.20

18.00 >11.20~18.00

28.00 >18.00~28.00

45.00 >28.00~45.00

4. 2 泵的分类为了评价泵的振动级别,按泵的中心高和转速把泵分为四类,见表2。表二

中 心 高转速类别 mm

≤225 >225~550 >550

r/min

第一类 ≤1 800 ≤1 000 —

第二类 >1 800~4 500 >1 000~1 800 >600~1 500

第三类 >4 500~12 000 >1 800~4 500 >1 500~3 600

第四类 — >4 500~12 000 >3 600~12 000

卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离h(mm)。立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸当作立式泵的中心高,即把立式泵的出口法兰密封面到泵轴线间的投影距离[如图6~图10所示h(mm)],规定为它的相当中心高。

4. 3 评价泵的振动级别泵的振动级别分为A、B、C、D四级,D级为不合格。泵的振动评价方法是首先按泵的中心高和转速查表2确定泵的类别,再根据泵的振动烈度级查表3可以得到评价泵的振动级别。杂质泵的振动评价方法,如按表2在第一类的泵,用表3中的第二类评价它的振动级别,依此类推。表三

振 动 烈 度 范 围 判 定 泵 的 振 动 级 别

振动烈度级 振动烈度分级界线 mm/s 第一类 第二类 第三类 第四类

0.280.28 A A A A

0.450.45

0.710.71

1.121.12 B

1.801.80 B

2.802.80 C B

4.504.50 C B

7.107.10 C

11.2011.20 C

18.0018.00

28.0028.00

45.00

5 记录内容与格式5. 1 记录内容a)泵的型号、性能参数、制造厂、出厂编号;b)测量场所、泵的安装与固定条件;c)使用仪器名称、型号、规格、标定单位、标定日期;d)测点位置示意图,或标明按JB/T 8097—1999中的图×布置的测点;e)不同测点、不同测量方向上的振动速度的均方根值;f)按JB/T 8097—1999第×类评价为A(或B、C、D)级振动。附录A多年来已认识到使用均方根速度测量以表征各种类型机器的宽范围的振动响应特性是很成功的,并且仍然这样使用着。对于单一交变波形,它们由离散的幅值和相位的谐振分量组成,并且不包含显著的随机振动或冲击分量,通过傅里叶分析,严格使用确定的数学关系式,能够说明各种基本的量(如位移、速度、加速度、峰值、均方根值、平均值等等)。这些已在别处导出,本附录不包括该方面的内容。以下概括了几个有用的关系式。

由所测的作为时间函数的振动速度记录,速度均方根值可由式(A1)计算:

v_{r.m.s.}=\sqrt{\frac{1}{T}\int_{0}^{T}{v^{2}}(t)dt}

v

r.m.s.

=

T

1

0

T

v

2

(t)dt

……………………………………(A1)式中:v(t)——与时间有关的振动速度;vr.m.s.——相应的速度均方根值;T——采样时间,它比组成v(t)的任何主频率分量的周期长。对于不同频率(f1,f2,…,fn)的加速度、速度和/或位移的值(分别为j=1,2,…,n),可由记录谱分析确定。如果振动的峰–峰位移值S1,S2,…,Sn(μm)、速度均方根值v1,v2,…,vn(mm/s)、加速度均方根值(m/s2)、频率f1,f2,…,fn(Hz)已知,则表征运动的有关速度均方根值由式(A2)给出:

…………………………………(A2)

v_{r.m.s.}=π×10^{−3}\sqrt{\frac{1}{2}[(S_{1}f_{1})^{2}+(S_{2}f_{2})^{2}+⋯+(S_{n}f_{n})^{2}]}\\ =\\ 脋12+□茀

v

r.m.s.

=π×10

−3

2

1

[(S

1

f

1

)

2

+(S

2

f

2

)

2

+⋯+(S

n

f

n

)

2

]

=

脋12+□茀

注:按照ISO 2041,频率f也可称作周期频率f。如果振动仅由两个显著的频率分量组成,即vmin和vmax,那么拍频的均方根值vr.m.s.可近似由式(A3)计算:

v_{r.m.s.}=\sqrt{\frac{1}{2}(v_{\max }^{2}+v_{\min }^{2})}

v

r.m.s.

=

2

1

(v

max

2

+v

min

2

)

…………………………………(A3)仅对单一频率谐振分量进行振动加速度、速度或位移值的变换,使用如图A1就能完成。如果已知单一频率分量的振动速度,那么峰–峰位移可由式(A4)计算:

S_{i}=\frac{450v_{i}}{f_{i}}

S

i

=

f

i

450v

i

…………………………………………(A4)式中:Si——峰–峰位移值,μm;vi——振动速度均方根,mm/s。有频率fi的成分,频率单位:Hz。

图 A1 对于单一频率谐波分量加速度、速度和位移之间的关系

5.9

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

JBT8097泵的振动测量与评价标准

阳谷祥光铜业有限公司 发布

泵的振动测量和评价标准

1前 言

本标准是根据JB/T 8097—95《泵的振动测量与评价方法》进行修订。

本标准的测量方法其主要技术内容与国际标准ISO 10816–1∶1995《机械振动——在非旋转部件上测量和评价机器振动》等效。本标准的评价方法保留JB/T 8097—95的内容。

第 1 页

对于含有挠性转子的一些泵在非旋转部件上测量是不完全合适的,须由ISO 7919–1《非往复式机器的机械振动——旋转轴的测量与评价准则 第一部分 总则》给出轴振动总则来补充。

本标准的附录A是提示的附录。

本标准起草单位:设备管理科

本标准主要起草人:

文件更改状态记录表

编号:

第 2 页

更改日期 更改通知单编号 版本号 更改章节号 更改方式 实施日期

泵的振动测量与评价方法

11 范围

本标准规定了在泵的非旋转部件表面进行振动测量与评价方法。

本标准适用于除潜液泵、往复泵以外的各种型式泵和泵用调速液力偶合器,转速一般为600~12 000 r/min;小于600 r/min可参照使用。

第 3 页

2 测量

2. 1 测量参数

2. 1. 1 频率范围

振动测量应是宽带,以便充分覆盖泵的频谱,其范围通常为10~1 000 Hz。

2. 1. 2 振动值

用满足第3章要求的仪器所做测量结果叫作指定测量位置和方向上的振动值。当评价泵的宽带振动时,根据经验通常考虑振动速度的均方根值,因为该值与振动能量有关。

隐形的故事
虚拟的玫瑰
2025-08-18 17:56:09
水泵的分类:

首先大类是按工作原理分:

1、叶片式泵

叶片式泵可分为:离心泵、混流泵、轴流泵、旋涡泵。

离心泵又可分单级泵、多级泵。

单级泵可分为:单吸泵、双吸泵、自吸泵、非自吸泵等。

多级泵可分为:节段式、涡壳式。

混流泵可分涡壳式和导叶式。

轴流泵可分为固定叶片和可调叶片。

旋涡泵也可分为单吸泵、双吸泵、自吸泵、非自吸泵等。

2、容积式泵

容积泵可分为往复泵、转子泵。

容积式泵是依靠工作元件在泵缸内作往复或回转运动,使工作容积交替地增大和缩小,以实现液体的吸入和排出。工作元件作往复运动的容积式泵称为往复泵,作回转运动的称为回转泵。前者的吸入和排出过程在同一泵缸内交替进行,并由吸入阀和排出阀加以控制;后者则是通过齿轮、螺杆、叶形转子或滑片等工作元件的旋转作用,迫使液体从吸入侧转移到排出侧。

容积式泵在一定转速或往复次数下的流量是一定的,几乎不随压力而改变;往复泵的流量和压力有较大脉动,需要采取相应的消减脉动措施;回转泵一般无脉动或只有小的脉动;具有自吸能力,泵启动后即能抽除管路中的空气吸入液体;启动泵时必须将排出管路阀门完全打开;往复泵适用于高压力和小流量;回转泵适用于中小流量和较高压力;往复泵适宜输送清洁的液体或气液混合物。总的来说,容积泵的效率高于动力式泵。

3、喷射式泵

是靠工作流体产生的高速射流引射流体,然后再通过动量交换而使被引射流体的能量增加。

动力式泵靠快速旋转的叶轮对液体的作用力,将机械能传递给液体,使其动能和压力能增加,然后再通过泵缸,将大部分动能转换为压力能而实现输送。动力式泵又称叶轮式泵或叶片式泵。离心泵是最常见的动力式泵。

动力式泵在一定转速下产生的扬程有一限定值,扬程随流量而改变;工作稳定,输送连续,流量和压力无脉动;一般无自吸能力,需要将泵先灌满液体或将管路抽成真空后才能开始工作 ;适用性能范围广;适宜输送粘度很小的清洁液体,特殊设计的泵可输送泥浆、污水等或水输固体物。动力式泵主要用于给水、排水、灌溉、流程液体输送、电站蓄能、液压传动和船舶喷射推进等。

4、泵的其它分类

泵除按工作原理分类外,还可按其他方法分类和命名。例如,按驱动方法可分为电动泵、汽轮机泵、柴油机泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。

泵还可以按泵轴位置分为:

1)立式泵

2)卧式泵

按吸口数目分为:

1))单吸泵 (single suction pump)

2))双吸泵 (double suction pump)

按驱动泵的原动机来分:

1.电动泵

2.汽轮机泵

3.柴油机泵

4.水轮泵