建材秒知道
登录
建材号 > 水泵 > 正文

离心泵技术论文(2)

淡然的铃铛
失眠的路灯
2023-01-01 12:24:55

离心泵技术论文(2)

最佳答案
自觉的向日葵
搞怪的秀发
2025-08-18 02:22:21

离心泵技术论文篇二

离心泵的管理和维修技术探讨

摘要:离心泵是机械装备制造业中比较通用的一种机械,广泛应用于社会生产的各个行业和部门。近年来,伴随着石油化工和国民经济的发展,对离心泵的安全可靠性能提出了更为严格的要求。离心泵作为输送物料的一种转动设备,对连续性较强的化工生产尤为重要。基于此,本文就离心泵的管理和维修技术展开分析与研究。

关键词:离心泵管理维修

中图分类号:C93文献标识码: A

引言

随着社会经济的快速发展及企业管理体制的不断改革,离心泵故障管理及维护受到了越来越多人们的关注,在我国现阶段,寻找离心泵馆长的维修技术已经成为一个新的课题,对离心泵进行良好的日常保养,完善设备的保养机制,是延长离心泵使用寿命的关键。

一、离心泵的基本构造

(一)叶轮。常见的离心泵结构中,主要有开式、半开式和闭式三种型式的叶轮。开式叶轮仅有叶片,没有前后盖板半开式类型的叶轮则是由后盖板和叶片组成而闭式叶轮不但有叶片,还有前盖板和后盖板。在各泵体结构中,离心泵主要通过叶轮对液体做功,也是唯一的做功部件。

(二)泵体。径向剖分式和轴向剖分式是两种普遍的离心泵壳体类型。离心泵中的单机泵壳体大多数为蜗壳式,多级泵壳体按径向剖分壳体划分成圆形和环形两种壳体类型。泵壳内腔呈现螺旋形是蜗壳式泵壳的主要特征。

(三)泵轴。泵轴主要是用来传递机械能,它是由联轴器和电动机相连,从而可以将电动机的转矩通过泵轴传送到叶轮。

(四)轴承。离心泵的轴承多为滑动轴承,所以润滑剂要求就比较严格,常用透明油作为润滑剂。

(五)密封环。减漏环是密封环的另一种说法,在不同资料下可能显示有所不同。

(六)填料函。填料函的主要作用是封闭泵轴和泵壳之间的狭小空隙,保证泵内水流和泵外空气不能相互泄露。主要构造是由填料、填料筒、填料压盖、水封环和水封管组成。

二、离心泵的基本工作原理

研究离心泵工作原理可为处理故障与制定预防措施提供技术依据。在通常情况下,离心泵就是利用物体离心力作用,来达到对液体物体完成输送的目的。在离心泵工作前,须事先将泵内叶片间和贮液槽内充灌满流体,然后再启动离心泵开始正常运转,此时离心泵内的流体就会随着叶轮高速旋转产生离心力运动,并在叶轮中心向外周作径向运动,最后顺叶片流道进入到排出管内。同时泵内的原有流体被旋转甩出后,叶轮中心即形成了一个低压区,而暂处于高压区贮液槽的流体就会源源不断的被吸收到叶轮中心,再依靠叶轮高速旋转被甩出进入到排出管内,形成流体不间断的被吸入和排出的循环输送作业,从而实现离心泵连续不断地将液态物体抽出进行输送

三、离心泵常见故障处理措施

(一)离心泵排液不畅和排液后中断的解决措施

检查泵内气体是否处于真空状态,泵壳和入口管线内的流体是否全部注满,如果不是真空要立即排净空气,没有灌注满的要及时重新添加达到要求标准。检查泵内叶轮转速有无异常,发现叶轮表现出过低的转速时,要立即进行调整适当提速。检查入口滤网、底阀有无附着的杂物,有就须立即排除异物,避免再次发生堵塞检查吸入侧管道连接处有无漏气,有就需及时排尽气体,检查吸入口淹埋深度是否太浅,调整合适位置避免异物堵上。

(二)离心泵运行中出现震动或异响的解决措施

检查离心泵的轴承情况及间隙大小,检查泵内油质清洁度和润滑程度,并进行逐一排除故障隐患。损坏轴承要及时进行更换处理,间距大的了要及时调整轴距到适当的位置对已经污染了的油质要马上进行杂质清除,对润滑不到位的部件,要立即更换新的润滑油脂。至于对那些过高震动频率的,则应及时更换、调整离心泵的轴承、轮齿等部位。

(三)离心泵功率消耗太大的解决措施

检查叶轮与耐磨环、泵壳有无摩擦,而进行适度的修理。检查流液密度是否合适,轴承有无损坏,如果有就及时进行修理或者更换轴承,调整零部件。检查泵轴是否有弯曲,并及时矫正。检查联轴器是否存在对中不良、轴向间隙太小,进而调整对中和轴向间隙到合适位置。

(四)水泵不能正常运转的解决措施

首先,检查离心泵的原动机运行有无异常,电源接入是否正确,如存在有原动机异常和电源接错的问题,须加以整改处理好也可用手盘联轴器直接检测,如遇故障问题严重的,可通过拆解泵壳,观察泵体内有无被卡的现象。检查泵内系统的水头、净压头等部件磨损情况,对凡是发现有磨损的零部件应及时更换。检查叶轮的完好程度及叶轮之间的间隙,及时更换掉完好程度差的损坏叶轮,调整间隙大的叶轮间隙到合适的位置为止。检查吸液槽的真空状态与吸入的高度位置,对没有排尽空气的要再排气,使吸液槽内达到真空状态,同时,对泵内系统的水头位置设置过高的,要重新调整。

(五)离心泵流量不足,扬程不达标的解决措施

导致离心泵的流量和扬程不够的主要原因为:叶轮的转速太低或叶轮的转动方向不对、泵吸入口串气、吸入口管线、滤网或叶轮堵塞、灌注不够、叶轮损坏、口环的间隙过大,漏损过大、吸入管中压力接近汽化压力、泵体内有气体。如离心泵在出现如下情况时,可采取下面的方法进行处理:①检查调整。②检查入口管线法兰。③清理入口过滤器。④更换叶轮。⑤增加入口压力,提高灌注头。⑥更换口环。⑦适当地增加入口压力,同时降低传输介质的温度。⑧放空排气或向有关系统卸压。

四、离心泵的管理和维护的优化策略

现代工业系统中,离心泵的适用范围从基本的生活需求到石油化工行业都有广泛涉及,不但用来输送水,而且还用来输送石油等其他不同性质的液体。按照不同的输送媒介,离心泵的种类也变得纷繁复杂,常见的有防腐泵和清水泵两种。为了保证一定的使用年限,减少企业成本提高经济效益,就必须不定期对离心泵加强管理和维护。

(一)做好离心泵安装工作,确保正常运行。离心泵是石油化工生产中的核心装置,其重要性不言而喻。而离心泵安装工作是前提和基础部分,要求安装工作人员一定要严格按照规范要求,确保设备的科学安装和正常运行。首先,设备的基础尺寸和位置一定要符合要求,横纵坐标的位置一定要合理,一般偏差不能超过20mm,地脚螺栓孔中心位置的偏差应该控制在10mm以内,地脚螺栓孔壁铅的垂直角度偏差应该在2毅。其次,安装中,一定要慎重选择垫铁的位置,在垫铁安装之前,一定要调整泵的标高、水平度,使其达到设计的标准值。只有精准的安全,才能确保离心泵运行的稳定性和安全性,垫铁的主要作用是使泵的重量以及运转过程中产生的惯性力均匀地传递给基础部分,这样能减少离心泵自身承载的荷重,确保其能长久运行。最后,离心泵安装中,需要安装两个垫铁,其中一平二斜,固定离心泵,如果一般离心泵的荷载比较大,可以选用三个垫铁,但是,数量最好不要超过三个。离心泵的安装是系统性的工作,对安装技术人员提出较高的要求,技术人员一定要注重每一个安装细节,确保每一个环节的工作质量,这样更能提高运行的可靠性,保证离心泵工作运行的效率。

(二)合理使用离心泵,提高运行效率。合理使用离心泵要求技术人员严格按照规范操作开展工作,避免离心泵低流量运行。一般离心泵在正常运行时,高压力下顺利运行,但是如果出现低流量运行,会导致离心泵故障问题。低流量运行时,离心泵内就会出现径向漩涡现象,此时就会产生很大的径向推动力,此时,离心泵就无法正常运转。石油离心泵的实际流量比较小,如果处于不合理连续转动运行中,就会导致轴折断。但是,一般离心泵的流量都比较低,很多时候能将大部分轴功率转化为热能,将能量传递给泵内的液体,进而引起整个外壳温度上升,此时,泵体温度升高,在长期小流量运行状态下,就会发生震动等故障现象。因此,一定要避免离心泵在低流量状态下运行,这样才能保证离心泵的正常工作,提高运行效率。其次,还应该做好离心泵润滑工作,基本都是滚轴承类型,润滑剂的养护和使用能确保离心泵的正常运行,在不受外界干扰的情况下,保证机械不会因为负荷力而变形。润滑工作也是重要的环节,一定要使润滑达到良好的状态。在选用润滑油时,一定要慎重选择比较良好的润滑油,在不同转速的情况下,应该形成油膜,这样更有助于提高离心泵的安全运行。同时,选用的润滑油应该具有高粘度性,离心泵在不同的条件下,都能有效的保护其使用寿命,确保离心泵不会受到负荷力以及温度等因素的影响,进而确保离心泵内部部件的顺利运行,避免离心泵在运行过程中轴和固定轴之间的摩擦,减少离心泵故障问题。

结束语

随着科技的不断发展,,离心泵的管理和维护对技术人员的业务水平提出了更高的要求,因此,企业各部门的操作人员必须加强理论知识的学习,并在实际工作中熟练运用。只有对离心泵的管理和维护工作充分重视,才能够保证其利用率、可靠性和安全性得到大幅度提高。

参考文献:

[1]刘福玉,刘福磊,孙广军,张凤霞.探讨多级离心泵常见故障检测与维修[J].才智,2012,20:36.

[2]席玉洁.离心泵故障诊断专家系统的应用研究[D].北京化工大学,2011.

[3]陈来保,潘金亮,焦红志,李京沛.高速离心泵常见故障原因分析及处理[J].河南化工,2008,08:38-39.

[4]朱力勇.离心泵常见故障分析与处理[J].中国石油和化工标准与质量,2013,17:79.

[5]白俊华.离心泵常见故障原因及预防措施[J].现代农业科技,2011,03:265-266.

看了“离心泵技术论文”的人还看:

1. 变频泵技术论文

2. 泵与风机节能技术论文

3. 变频技术论文2000字

4. 节电技术论文

5. 变频器技术论文

最新回答
害怕的紫菜
无语的小懒虫
2025-08-18 02:22:21

我个人认为,这种学习是很有益也是很有必要的。当然我们自己有很多好的一面,比如说在渗油漏油处理方面。但是我们既然是去学习就是要去看看人家的保养过程,想想我们以后哪些地方可以学习可以借鉴。只有在不足之处找原因,向优秀的同行找标杆,找解决问题的方法,我们才能真正地提高。所以我们要本着谦虚的心态、本着求教的心态、本着向优秀的同行找标杆的心态去学习。我们去学的恰恰就是与我们的水泵保养的不同之处,我们所不具有或者说没有充分掌握的技能,从细节上去学习,因为大的套路,说实话大家都是略知一二的。我们要学的就是有人家的细微之处。细微之下见精神,体现出一个人的工作态度,体现出一个人的工作技能,体现出一个团队的工作效率,体现出设备的维护管理水平。下面对各方面稍作总结,以便于在今后水泵保养工作中提高和改进。

学习他们对材料的重视。据程忠平师傅介绍,盘根的材质和尺寸用得适当好处很重要,我们是专门从上海购买是中石化生产的 28MM牛油盘根,最好先用比28稍微大一点,因为同样尺寸的盘根也略有大小。盘根最好不用敲硬(有时太大小,我们先敲硬),如果敲过的盘根装上去其本身的伸缩弹性就会减小同时增大了对泵轴的磨擦。机油他们使用是是68号机油,润滑脂用是高级耐高温润滑脂(小包装)。

学习他们分工明确、配合协调好。以首席工人程师傅作为现场技术负责人,6个机修总体配合协调好,工作中不急不燥,慢活出细工。

学习他们工具的准备充分。专用配备小三轮车,车上放着各种专用工具,以方便拿取。电炉、防火布等加工条件较好。

学习他们工作场地的选择。特意将转子吊到上面宽敞明亮处进行保养。

学习他们的保养方法和技术水平。特别是轴承更换和联轴器的加热方法和安装技巧。

几个细节更值得我们学习。一、用斩骨刀加工盘根,使切口更加平。二、在盘根安装时,每根切口相隔90-120度(他们是180度),最后一根是向下。三、石棉纸用于水泵密封时,下面用黄油,上面用机油,以保证下一次打开泵壳时石棉还在下面的泵体。四、联轴器之间的距离最好是3毫米。四、轴承加热和安装方法。

想法一:配备三轮车、刀、铲刀、电炉、防火布等工具的补充。

想法二:大修工作中也实行技术负责人或项目负责人。

想法三:在人员少情况下,走自主培养、自我提高机修专业水平之路。

相法四:大修保养中慢活出细工,宁可慢一点,工作做得更加细一点。保养到位了,以后的维护工作也更省事了。

想法五:有机会配备外聘机电工1名,以确保大型维修的人员充足。

灵巧的泥猴桃
孝顺的世界
2025-08-18 02:22:21
1 引言

供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频恒压供水系统能够很好的满足现代供水系统的要求。

在变频恒压供水系统出现以前,有以下供水方式:

(1) 单台恒定转速泵的供水系统

这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。

(2) 恒定转速泵加水塔(或高位水箱)的供水系统

这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。

(3)恒定转速泵加气压罐的供水系统

这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。

变频恒压供水系统不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,s7-200具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。

2 供水系统的基本特性

供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。

管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。

扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。

图1 供水系统的基本特性

3 变频恒压供水系统的构成及工作原理

3.1 系统的构成

变频恒压供水系统采用西门子的s7-200 plc作为控制器,变频器mm440是频率调节器,交流接触器和电动机作为执行机构,压力传感器作为控制的反馈元件。s7-200 plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。

三相交流电与mm440的电源输入口连接,经过变频器变频后的交流电接异步电动机,异步电动机带动水泵转动。s7-200数字输出口输出控制信号到交流接触器,交流接触器两端连接的是工频或变频的三相交流电,主要起接通或断开三相交流电与异步电动机。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。

图2 变频恒压供水系统的总体框图

3.2 系统的工作原理

变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。

异步电机的转速为:

其中:

n0为异步电机同步转速;

n为异步电机转子转速;

f为异步电机的定子输入交流电的频率;

s为异步电机的转差率;

p为异步电机的极对数。

由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。

当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。

变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。

系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的闭环控制系统,其设计是按照两个电机就可以完全满足供水要求。

图3 变频恒压供水系统的控制原理框图

4 硬件电路设计

4.1 主电路

变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、热继电器kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。

图4 系统主电路图

4.2 控制电路

控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的i0.0输入口相连接,当按下sb0时,i0.0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,i0.1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,i0.5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,i0.6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。i0.5和i0.6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,i0.2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。

图5 plc外围接线图

5 程序设计

5.1 plc程序设计

plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,i0.1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。

图6 主程序流程图

当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到i0.5。此时,q0.1为“0”, q0.2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后q0.3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。

当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到i0.6。此时,q0.4为“0”,km2断开,2#电机退出变频并逐渐停止。同时q0.1为“1”,q0.2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。

当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。

5.2 变频器mm440的参数配置

变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过a/d转换器得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。

附表 mm440的参数配置

6 结束语

应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。

参考文献

[1] 李光,谢欢,王直杰. 高压变频器模拟量控制电路及功能设计[j]. 电气传动自动化,2008,38(7):63-68.

[2] 彭旭昀. 一种基于变频器pid功能的plc控制恒压供水系统[j]. 机电工程技术,2005,34(10):54-56.

[3] 陈新恩,王永祥. 基于s7-200的变频调速恒压供水系统[j]. 制造业电气,2006,25(6):37-39.

[4] 朱玉堂. 变频恒压供水系统的研究开发与应用[d]. 杭州:浙江大学,2005.

野性的百褶裙
内向的海燕
2025-08-18 02:22:21
节能型循环水泵在供水系统中的应用

前言

电力工程建设中供水系统投资高、工程量大施工复杂,对电力工程建设造价与投资回收年限影响较大,在电厂供水系统方案设计中非常重视自然通风冷却塔与循环水泵选择,循环水泵房与循环水管道系统优化布置,因为它们直接影响汽轮机安全运行与发电机满负荷发电,直接影响电厂的经济性,为了降低供水系统年运行费用,节约工程造价必须推广节能型设备的应用、优化系统的配置。

火力发电厂中汽轮发电机凝汽器的冷却水量随季节变化,夏季冷却水量大冬季冷却流量小;随汽轮机抽汽量变化,抽汽量大冷却流量少,抽汽量小冷却流量大。供水系统采用一台机组配二台相同型号水泵并联模式,将循环冷却水量平均分配给二台循环水泵,这种配置模式符合《火力发电厂水工技术规程、规定》,在电厂供水系统设计中广泛使用。 但是,一台机组配二台相同型号水泵在运行过程中经常出现问题,为了从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾,开发一种新型高效节能型水泵事在必然。

高效节能型循环水泵在供水系统中的应用

近年来全国各地相继建成一大批135MW火力发电厂,在山东里彦电厂、徐州诧城电厂、甘肃金川电厂、山东魏桥热电厂,我们先后设计了18台135MW国产超高压、中间再热机组。这些电厂位于我国华北、东北与西北地区,共同特点是企业自发自用,除了有稳定的电力需求外还有供热负荷,供热负荷波动较大,夏季热负荷小冬季热负荷大,年采暖期长。

以135MW供热机组为例,汽轮机最大连续出力时汽轮机凝汽器的凝汽量为324t/h,需要循环冷却水量19640m3/h;汽轮机额定抽汽工况时汽轮机凝汽器的凝汽量为223t/h,需要循环冷却水量12274m3/h;汽轮机最大抽汽工况时汽轮机凝汽器的凝汽量143t/h,循环冷却水量4700m3/h。随机组运行工况的改变,循环水系统需要的冷却水量从4700m3/h--19000m3/h的巨幅波动。

供水系统采用常规水泵布置,为了满足夏季汽轮机运行要求,通常选用选择水泵流量9800-11700m3/h,扬程18.0-21.5米,按照夏季二台水泵并联运行来满足循环水系统需要的冷却水量19000m3/h,其它季节通过一台水泵运行来满足循环水系统冷却水量需要,水泵流量范围9800-11700m3/h,系统超过此流量范围运行时,水泵运行很不经济。

不难发现:汽轮机在额定抽汽工况下,循环冷却系统需水量为12274t/h,系统水阻比汽轮机纯凝工况时略为减少2.0-3.0米,水泵扬程下降到15.0-16.5米,单台水泵流量增加到13000t/h,一台水泵运行可以满足系统要求,只是运行效率不高。可是汽轮机最大抽汽工况时,循环冷却水量只有4700t/h,系统水阻比汽轮机纯凝工况时大幅度减少,导致水泵扬程提高、运行效率很低,造成冷却塔淋水装置涌水、加大配水槽流速,水流热交换时间减少。由于水泵的工作效率极低,电动机无功功率增加,白白地浪费电能。

如果在135MW国产超高压、中间再热机组中循环水系统采用新型高效节能型水泵,将从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾。

以G48Sh水泵为例,在转速n=485r/min时、水泵流量17500m3/h、扬程18米、水泵效率88%、轴功率947kw;在转速n=420r/min时、水泵流量13200m3/h、扬程14.5米、水泵效率87% 轴功率587kw。该水泵设计参数与135MW机组循环水系统参数基本吻合、运行效率高。对100多台G48Sh水泵进行抽样检测,实际运行效率为84-88%;常规48Sh-22水泵运行效率只有60%。

水泵配用电动机采用双极数、双转速的核心技术,增加了循环水系统运行调节灵活性。根据凝汽器冷却水量随季节变化、随抽汽量改变,自动调整电动机极数与转速,同时改变输出功率与水泵供水量。一台G48Sh水泵高转速运行比二台48Sh-22并联水泵每小时多供水量3000吨;一台G48Sh水泵低转速运行电动机输出功率可以从947KW调整到587KW,电动机功率降幅达37%,其节能效果非常明显。因为循环水系统除了夏季水泵高转速运行外,其他季节基本上可以低速运行,按照年运行时间7200小时计算,每年每台水泵可节省电量230万度。按照电厂厂用电价0.2元/度计算,单台循环水泵每年节约电费大约为40万元左右,按照10-15年回收年限计算,单台循环水泵节约电费高达400-600万元,对于安装几台节能型循环水泵的电厂,其经济效益非常可观不可小视,这也是许多电厂节能技术改造的一个发展方向。而常规水泵配用电动机是固定不可调的,一定的转速所对应的输出功率是不变的。单台高效节能型循环水泵比等容量常规SH系列离心水泵价格高15-20万元,这部分投资费用只须电机低速运行很短时间即可收回全部成本。

高效节能型循环水泵的引入可以优化系统水力条件,加宽了水泵高效区段适应范围,有效地提高水泵工作效率;改变了一台汽轮机配二台等容量水泵常规设计理念,提出了一种新的水泵配置来满足汽轮机的变工况运行要求,本体结构采用卧式泵壳设计,厂运行、检修非常方便。

山东十里泉电厂(2×125MW)循环水系统原来配备了4台同型号48SH-22水泵运行,确实存在水泵供水量不足、效率低、经济性能差。1998年10月将其中的4#水泵更换成G48SH水泵,投产后电厂委托电力试验研究所进行了水泵性能测试,在高、低转速时运行效率分别高达87.78%与86.11%,比未改造其他水泵效率分别提高28.26%和26.5%,耗电量明显减少。

广东云浮电厂(2×125MW)也是配备了4台同型号循环水泵48SH-22。夏季3台水泵运行,其他季节2台运行。因为循环水流量不足、效率低,将其改成G48SH水泵,投产后委托广东电力试验研究所对水泵效率进行检测,新泵高转速时实际流量16537t/h、运行效率87.78%、电动机功率1002KW;新泵低转速时实际流量13080t/h、运行效率为86.12%、电动机功率646KW。水泵与机组运行工况吻合。原水泵实际流量14400t/h、效率59.62%、电动机功率1089KW;最高效率70%时流量为11540t/h,水泵与机组运行工况不符。高转速时新泵比旧泵供水量大2137 t/h、功率低87.7KW、效率高28.16%;低速时新泵在供水量相同情况下,单台水泵每小时可以节省443KW,节能效果显著。

结论

任何新技术的推广都需要一个认识过程, 高效节能型循环水泵的最大特点是节能、工作效率高,值得在全国推广。但是它是否适合所有地区、所有135MW机组的运行还需要更多的实际应用证明,需要因地制宜的选择。

推广高效节能型循环水泵不仅涉及到电厂循环水泵的配置、水泵备用与水泵运行费用问题,而且关系到水泵与汽轮机运行的联锁、控制问题等等,尤其在长江边建设取水泵房必须谨慎选择,高效节能型循环水泵的几何尺寸较等容量水泵大的多,对江边取水泵房而言,设备及设备运行费用不及取水泵房结构费用与施工费用,特别是水源枯水位与最高水位相差较大的时候,取水泵房几何尺寸的任何变化对工程造价的影响是非常大的。

称心的薯片
隐形的芝麻
2025-08-18 02:22:21
采暖循环水泵电耗分析

【 水泵节能论文之一 】

一.采暖系统循环水泵的必要能耗

采暖系统循环水泵的能力与供暖区域内建筑物热负荷和供暖管路的管径、长短有关。设计者的专业水平不同,设计工作的精确程度不同,循环水泵所选型号不尽相同,水泵运行时的工况也就不同。选用合理的水泵运行时效率高,电能消耗就小;不合理的效率低,电能消耗就大。

按设计热负荷计算出的循环流量为Gj,系统管路的计算总阻力为Hj,Gj和Hj有足够的计算精度并且施工安装准确。选用的循环水泵其额定流量为Ge、额定扬程为He,分别等于Gj和Hj。那么采暖系统运行时,水泵始始终在最高效率点工作。这就是设计规范规定的计算模型。只要达到这样的设计和施工标准,就可完完全全保证系统采暖的安全可靠,水泵运行的电能消耗最经济。以这种工况运行的水泵轴功率Ne称为必要轴功率。电机供给水泵运转的能耗最小且保证需要,所以称为必要能耗。

水泵各种工况下的轴功率按下式计算:

N=H·G/367·η (1)

式中: N----水泵的轴功率,KW;

H---水泵的扬程,mH2O;

G---水泵的流量,m3/h ;

η--水泵的效率,%。

当室外温度变化时,为了保证室内温度的恒定,大多数采暖系统采用“质”调节的方法。在“质”调的过程中,水泵的循环流量始终保持恒定,也就是说在整个采暖期内水泵始终按固定数值的轴功率Ne连续运行。整个采暖期水泵的电能总耗量Ee按下式计算:

Ee=n*24*Ne (2)

式中:Ee—采暖期总能耗,KWh;

n--采暖天数;

24--每天运行小时数;

Ne--水泵的轴功率,KW。

二.严重右偏工况时水泵电能消耗

同一台水泵工况点不同,也就是说水泵实际的流量、扬程不同,水泵的效率不同,电能的消耗量也就不同。水泵的工况可分为三种类型:额定工况就是水泵的铭牌所示参数的工况,“左偏”工况就是流量小于额定流量的工况,“右偏”工况就是实际流量超过额定流量的工况。因为采暖系统中“右偏”工况的循环水泵存在相当普遍并且电能浪费严重,所以重点作以分析。

1.“右偏”工况的特征:

①.温差偏小:

采暖系统在设计外温条件下运行时,供、回水的温度差远小于设计采用的温差(对于低温水采暖系统温差为25℃)。这就是说实际发生的循环流量,远远大于按设计热负荷计算出的循环流量Gj。

②.水泵前后的压差偏小

水泵运行时,可以简单这样确认,水泵进出口的压力表的压力差值(按米水柱计算)正好等于水泵的扬程(按米水柱计算),水泵就在高效点工作;压力差值小于水泵的扬程,水泵就在“右偏”工况下工作。

③.水泵电机的电流值严重超标:

水泵在额定工况工作时电机的电流值按下式计算:

I=N/(V*COSΦ*η) (3)

式中:I--电机的电流值,A;

V--电机的电压值,V;

N--水泵的额定功率值,KW;

COSΦ--电机的功率因数值;

η--电机的效率值,%。

水泵在额定工况下工作时,其要求的功率值要比配用电机的功率值要小,相应比电机的额定电流值也要小。但大多数运行中的水泵电机的实际电流值超过按上式计算出的标准值,还有相当一部分水泵电机接近或超过电机额定电流值而产生电机过热现象。

2.·产生“右偏”工况的原因:

整个采暖系统设计管径相对大,对于一定的循环流量系统的阻力小,需要水泵的扬程低,水泵的电机小,运行时的电能消耗小,总的运行费用就少。换另一角度,水泵选用的扬程高,就可以减小整个系统的管子直径,相应降低工程的成本,减少一次性投资额。

由于种种原因,已经形成的系统的管径在相当大的条件下,循环水泵也采用过高的扬程,致使高扬程的水泵在低阻力的系统上工作,这就不可避免形成循环水泵在“右偏”工况下工作结果。这种结果产生三个方面的损失,一为管路投资已经加大并支出而没有得到降低运行费用的预期效果;二为水泵设备投资加大减小管路投资的条件变为无效;三为水泵电能消耗成立方倍地增加,浪费相当严重。

3.·“右偏”工况下循环水泵的电能消耗:

例题1:*市某锅炉房,锅炉容量为2.8MW,采暖系统在设计气温条件下工作时,锅炉的实际出力为容量的80%时满足采暖要求,循环水泵的供水压力Pc=0.5MPa,回水压力Px=0.27MPa,循环水泵的型号为is100-80-160。该泵在运行时的工况及能耗分析简述如下:

一·实际工况分析:

①.is100-80-160水泵的性能曲线

H=38.82-0.000682G2 (4)

N=4.2+0.07G (5)

②.水泵的额定工况参数

Gep =100 m3/h η=75 %

Hep =32 mH2O Nd=15(电机功率) KW

Nep=11.2 KW

③.循环水泵的实际工况参数

HS=(0.5-0.27)*100=23 mH2O

Hs= =152 m3/h

Ns=4.2+0.07*152=14.84 KW

ηS=(23*152)/(367*14.84)=64.19 %

④.采暖系统阻力曲线:

HJ=S·G2=0.0009955·G2 mH2O (6)

二·规范规定的工况:

①.系统设计循环流量:

2.8MW的锅炉全负荷时的设计流量为100 m3/h,80%负荷时:

Gj=100*80%=80 m3/h

②.系统的循环阻力:

Hj=0.0009955G2J =0.0009955*802=6.37 mH2O

③.循环水泵的轴功率:

选用IRG100-100A型循环水泵,其额定流量为Gj=89m3/h,额定扬程为Hj=10mH2O,额定效率η=74 %,运行时调整至额定点工作,其轴功率按下式计算:

NJ=(GJ*HJ)/367*ηJ

=(89*10)/(367*0.74)=3.277 KW

三·能耗比较:

Ns/NJ=14.84/3.277 =4.529

实际一个采暖期循环水泵电能用量可满足4.5个多采暖期循环水泵电能的用量。

三·结论和讨论:

1·“右偏”工况应列为热水采暖系统的“通病”之首。理由一,在全国范围各采暖区域内的采暖系统中普遍存在。理由二,电能浪费特别严重,循环水泵实际电耗中,约有75%以上的(本文举例中为77.91%)电能是被浪费了的。如此巨大的浪费现象与发展节能性社会国策是不相容的。因此,采取各种有效措施进行治理,是当前采暖工作中的当务之急。

2·"低温户"在各采暖系统中不同程度地存在,同样也有高温户的存在。其根本的原因是热量平衡工作不到位。只要是各支环路这间的阻力相对关系不变,采用大流量或者采用小流量热量分配的不平衡仍然不变。要解决"低温户"问题,热的关阀门,冷的开阀门,只有这一个办法。相当一部分供热管理人员坚持认为目前的“大流量”运行方式能解决"低温户"的不热问题热平衡的理论是不支持的。

3·按供水95℃回水70℃低温水设计的采暖系统,按设计规范计算出的循环流量是能够保证安全可靠经济运行的合理流量。实际发生的流量小于这一计算流量就要变成高温水采暖系统,显然安全技术上不允许。实际流量大于这一循环流量,就变成了比低温水采暖系统还低温的采暖系统(温差约为10℃左右),这种系统已经成为现实的其后果之一,采暖工程设计已难及实践结果评价优劣,按规范认真设计的优秀作品最后不热,不按规范人加大散面积加大管径增大投资的不良设计反而工作正常。其后果之二,电能严重浪费。

4·还应当指出的是,相当一部供暖工程基层管理人员对水泵调节技术知识不熟,水泵上存在的问题看不出来,也就谈不上前针对性地采取相应的技术措施。

5·以上所述不对不足之处,欢迎批评指正。

务实的汉堡
端庄的芝麻
2025-08-18 02:22:21
水泵是一种以冷凝器放出的热量对被调节环境进行供热的一种制冷系统。就水泵系统的热物理过程而言,从工作原理或热力学的角度看,它是制冷机的一种特殊使用型式。它与一般制冷机的主要区别在于:

①使用的目的不同。水泵的目的在于制热,研究的着眼点是工质在系统高压侧通过换热器与外界环境之间的热量交换;制冷机的目的在于制冷或低温,研究的着眼点是工质在系统低压侧通过换热器与外界之间的换热;

②系统工作的温度区域不同。水泵是将环境温度作为低温热源,将被调节对象作为高温热源;制冷机则是将环境温度作为高温热源,将被调节对象作为低温热源。因而,当环境条件相当时,水泵系统的工作温度高于制冷系统的工作温度。

2。水泵的由来

随着工业革命的发展,19世纪初,人们对能否将热量从温度较低的介质“泵”送到温度较高的介质中这一问题发生了浓厚的兴趣。英国物理学家J.P.Joule提出了“通过改变可压缩流体的压力就能够使其温度发生变化”的原理。1854年,W.Thomson教授(即大家熟知的LordKelvin勋爵)发表论文,提出了热量倍增器(HeatMultiplier)的概念,首次描述了水泵的设想。

当时,水泵供暖的对象主要是民用,供暖需求总量小,特别是对由于采暖方式及其对环境的影响尚没有足够的意识。人们采暖的方式主要是燃煤和木材,因而,热泵的发展长期明显滞后于制冷机的发展。

上世纪30年代,随着氟利昂制冷机的发展,水泵有了较快的发展。特别是二战以后,工业经济的长足发展带来的对供热的大量需求及相对能源短缺,促进了大型供热及工业用水泵的发展。1973年的全球性能源危机,进一步促进了水泵在全世界范围内的发展。

闪闪的小丸子
正直的巨人
2025-08-18 02:22:21
随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考!

变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》

【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。

【关键词】变频器节能水泵风机

0 引言

锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。

1 变频器应用在水泵、风机的节能原理

图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。

图1 水泵(风机)的H-Q关系曲线

图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。

图2 为水泵(风机)的P-Q的关系曲线

如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。

2 水泵、风机的节能计算和分析

通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=0.4nn。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为:

Psn=Kn■■=K(0.4nn)3=0.064Kn■■=0.064Pn

节能率 =■=■=■=93.6%

表1 电动机节能率

供热公司胜利锅炉房将电动机改为变频调速,其中:

表2 补水泵电动机在定速和变速不同情况下测出的数据

根据表2的数据,一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后补水泵电动机节约电费:

(11-1.73)×24×190×0.37=15640.344元

表3 鼓风机电动机在定速和变速不同情况下测出的数据

根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后鼓风机电动机节约电费:

(18.5-3.95)×24×190×0.37×5=122743.8元

表4 引风机电动机在定速和变速不同情况下测出的数据

根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后引风机电动机节约电费:

(37-32.9)×24×190×0.37×5=34587.6元

综上所述,胜利车间安装变频后,一个保温期合计节约电费:

15640.344+122743.8+34587.6=172971.744元

节能效果明显。

通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。

(1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。

(2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。

(3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。

(4)安装容易,调试方便,操作简便,维护量小。

(5)节能省电,燃煤效率提高。

(6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。

3 结束语

引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。

【参考文献】

[1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力.

[2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998.

[3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局.

变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》

【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。

【关键词】自动化控制变频器技术改造

1 锅炉风机电机应用变频器调速控制

以DHL141.57/150/90AⅡ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下:

型号 容量(KW) 电压(V) 额定电流(A)

引风机 Y280S4 75 380 139.7

鼓风机 Y200L4 30 380 57

在进行变频器改造以前,各风机在正常情况下的运行数据统计如下:

平均电流 最大电流 最小电流

引风机 142 145 139

鼓风机 59 63 57

首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。

2 补水泵、循环泵电机应用变频器进行调节控制

以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为:

序号 型号 功率 额定电流 流量

补水泵 1#泵 Y180M4 18.5 35.9 25

2#泵 Y180M4 18.5 35.9 25

循环泵 1#泵 Y315M14 132 237 630

2#泵 Y315M14 132 237 630

3#泵 Y315M14 132 237 630

4#泵 Y2315M4 132 240.4 630

正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。

为充分利用变频器,采用1台变频器来实现两台电机的调速控制2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室

图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题

锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。

对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。

采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。

变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。

低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。

要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。

随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。

参考文献:

[1]王占奎.变频调速应用百例.北京:科学出版社出版,1999.4

[2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社,2002.7

变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》

摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。

关键词:变频器,控制技术,应用

电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的

调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。

1.变频调速技术的现状

电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。

1.1国外现状

采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定:

1.1.1市场有大量需求

随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。

1.1.2功率器件发展迅速

变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。

IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。

1.1.3控制理论和微电子技术的支持

在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。

1.2国内现状

从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。

进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。

因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。

2.变频调速技术未来发展的方向

变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制(2)开发清洁电能的变流器(3)缩小装置的尺寸(4)高速度的数字控制(5)模拟与计算机辅助设计(CAD)技术。论文检测。

3变频调速技术的应用

纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约1.1亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。

有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。

参考文献

[1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) .

[2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) .

猜你喜欢:

1. 电气类科技论文

2. 电子应用技术论文

3. 电气控制与plc应用技术论文

4. 变频器应用技术论文

5. 变电运行技术论文

6. 光伏应用技术论文

机智的凉面
贪玩的黑米
2025-08-18 02:22:21

水泵是输送流体或使其增压的机械,包括某些输送气体的机械。其作用是向汽轮机凝汽器供给冷却水,用以冷却凝气轮机排汽。一般分为:立式和卧式,循环运行起来靠得水流冲击运行,防止共振必须用ZTA阻尼弹簧减震器。

1、上海松夏ZTA阻尼弹簧减震器结构特点:

上海松夏ZTA阻尼弹簧减震器是由弹簧和橡胶组合而成的新型减震器产品,这种减震器里面的弹簧可以起到减振的作用,还有橡胶可以起到隔音的作用,弹簧在产品内部保护起来,弹簧避免氧化,这样使弹簧减震器的使用寿命更长。

2、上海松夏ZTA阻尼弹簧减震器设计原理:

上海松夏ZTA阻尼弹簧减震器按“低频大阻尼减振器”设计原则,采用并联多个压缩螺旋弹簧组合,提高产品稳定性能。

采用金属丝网作阻尼材料,不但能增加阻尼系数,克服其阻尼比小时,容易产生的共振现象,而且延长使用寿命。为便利安装,减振器上下端面套置橡胶衬垫、增大磨擦系数,可直接放置在隔振台座与支承结构之间,一般不需连接固定。

微笑的菠萝
受伤的丝袜
2025-08-18 02:22:21
基于PLC的恒压供水系统设计

随着人民生活水平的日趋提高,新技术和先进设备的应用

,使给供水设计得到了发展的机遇。于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。本系统采用PLC进行逻辑控制,采用带PID功能的变频器进行压力调节,系统存在工作可靠,使用方便,压力稳定,无冲击等优越性。

本设计恒压变频供水设备由PLC、变频器、传感器、低压电气控制柜和水泵等组成。通过PLC、变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入PLC,经PLC运算处理后,获得最佳控制参数,通过变频器和继电器控制元件自动调整水泵机组高效率地运行。供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统主管道水压的;系统水处理设备运转的监视、控制;故障及异常状况的报警等。现场监控站内的控制器按预先编制的软件程序来满足自动控制的要求,即根据供水管的高/低水压位信号来控制水泵的启/停及进水控制阀的开关,并且进行溢水和枯水的预警等。

文中详细介绍了所选PLC机、变频器、传感器的特点、各高级单元的使用及设定情况,给出了系统工作流程图、程序设计流程图及设计程序。

关键词:

可编程控制器;变频器;传感器

目录

1前言

1

1.1供水系统发展过程及现状

1

1.2供水系统的概述

2

1.2.1.变频恒压供水系统主要特点:

2

1.2.3.恒压供水设备的主要应用场合:

2

1.2.4.恒压供水技术实现:

3

2

系统总体设计方案

4

2.1系统设计方案

4

2.1.1

系统控制要求

4

2.1.2

控制方案

4

2.1.3运行特征

5

2.1.4

系统方案

5

2.2可编程控制器(PLC)的特点及选型

7

2.2.1

PLC特点及应用

7

2.2.2可编程控制器的选型

8

2.2.3.PLC

CPM2A模拟量输入/输出单元

12

2.3变频器选型及特点

15

2.3.1

ABB产品信息:

15

2.3.2

变频节能理论:

15

2.3.3.变频恒压供水系统及控制参数选择:

16

2.3.4.变频恒压供水系统的优点及体现

17

2.4

远传压力表

19

2.4.1

主要技术指标

19

2.4.2结构原理

19

2.5

系统控制流程设计

20

2.5.1系统组成及作用

20

2.5.2

系统运行过程

20

3

软件设计

24

3.1

系统中检测及控制开关I/O分配

24

3.2

I/O地址及标志位分配表

25

3.3

流程图

28

3.4

程序设计:

29

4.结论

43

44

参考文献

45