离心泵的平衡盘装置的构造和工作原理如何?
离心泵的平衡盘装置主要由由平衡盘、平衡座和调整套(有的平衡盘和调整套为一体)组成。平衡盘装置利用轴向间隙的变化,能够自动调节过水量,完全平衡轴向力。轴向间隙正常工作时一般是0.1~0.2mm,但是要求转子有轴向窜动量,平衡盘是易损件。
平衡盘装置(见图)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的轴向间隙b2,平衡盘后面的平衡室与泵吸入口连通。径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于多级泵吸入口的压力加平衡水管的管阻损失。由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。
平衡盘瓢偏后,其端平面与轴心线就不垂直,组装后使平衡盘与平衡环之间出现张口,无法平衡轴向推力,使平衡盘磨损电机过负荷。因此,凡有平衡盘装置的水泵都要进行瓢偏测量。
发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。
5 y0 BL$ XQ! H, E目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。$ F: {, U! }: B&Y&c
1、给水泵的解体 : @X n2 D+ m# U+ R$ q6 G
水泵检修解体阶段的测量目的在于:2 L( Z. ^&vc' L4 n
a)与上次检修时的数据进行对比,从数据的变化分析原因制定检修方案;
1 T( G+ m' o$ J+ ~ ^b)与回装时的数据进行对比,避免回装错误。
' B( c- C% A3 x1 I( M- ?( }1.1轴瓦的间隙紧力及瓦口间隙8 X, W. X. P5 G
轴瓦顶部间隙一般取轴径的0.15%~0.2%,瓦口间隙为顶部间隙的一半。瓦盖紧力一般取0.00mm~0.03mm。间隙旨在保证轴瓦的润滑与冷却以及避免轴振动对轴瓦的影响。如果在解体过程中发现与标准有出入,应进行分析,制定针对性处理方案并处理。
: x( J" _0 Y- |' } k2 I1.2水泵工作窜量' z/ {. x$ \- Z8 m
水泵工作窜量取0.8mm~1.2mm。工作窜量的数值主要是保证机械密封在水泵启停工况及事故工况下不发生机械碰撞和挤压。也是水泵运行中防止动静摩擦的一个重要措施。- Z1 ?+ m* E8 S" ^5 y' R
1.3水泵高低压侧大小端盖与进出口端的间隙, S3 \/ e! c( H$ u# d/ b7 W
测量水泵高低压侧大小端盖与进出口端的间隙目的在于检查紧固螺栓是否有松动现象,同时为水泵组装时留下螺栓紧固的施力依据。
2 I8 C5 X ^) P, l! \* v1.4水泵半窜量的测量
" z&M, `5 I/ ^3 q6 {在未拆除平衡盘的状态下测量水泵的半窜量,水泵的半窜量应该是水泵总窜量的一半,一般情况下其数值为4mm左右。检查水泵半窜量与原始数据进行比较,可找出平衡盘磨损量及水泵效率降低的原因。5 n. C$ \, A! c D( w: O! Q% G
1.5水泵总窜量的复查
- by% ?( I( a3 [! a拆除平衡盘后即可测量水泵总窜量,水泵总窜量是水泵的制造及安装后固有的数值,一般水泵总窜量在8mm~l0mm。水泵总窜量如果发生变化,则说明水泵各中段紧固螺栓有松动或水泵动静部分轴向发生磨损。
s# j$ }' ^$ r+ a1.6水泵各级窜量
D1 J$ o2 n6 b9 V% B9 ?' v, Z水泵在抽出芯包后就要对各级中段及叶轮进行解体,在解体过程中应对水泵逐级进行窜量测量,在测量各级窜量的过程中还应对各级中段止口轴向间隙进行测量。各级中段的窜量应在总窜量数值的附近,一般不超过0.50mm,如数值偏差较大或与原始数据出入较大,应认真分析原因,并进行消除。各级中段止口间隙的测量是为了检验水泵总装的误差。' b3 D3 M0 |: M, T1 }
解体过程各数据的测量,目的是根据数据进行分析,找出水泵故障的原因,制定本次检修的方案及针对性处理措施。同时,在回装过程中进行参考,检验回装过程的误差。8 u3 _- k* z% x' X p
2、水泵静止部件检修中间隙的测量与调整 x d7 m0 a u6 k9 s) W( m
2.1各中段止口径向间隙的测量与调整/ X/ j* f: @% O&Y&k
测量相邻两泵段的止口间隙,方法如图1。将相邻两泵段迭起,再往复推动上面的泵段,百分表读数差就是止口间隙。然后按上法对90°方位再测量一次取其平均数。其间隙值一般为0.04mm~0.08mm,当大于0.1mm时,就要进行修理。简单的修理方法,可在间隙较大的中断凸止口周围均匀地堆焊6~8处,每处长度25mm~40mm,然后将止口车削到需要尺寸。各中段止口间隙数据在水泵检修中非常重要,止口间隙过大,则增加了水泵转子的相对晃度,造成水泵通流间隙的偏移,二单侧间隙减小,运行中则有可能发生动静摩擦引起水泵抱死。止口间隙过小则有可能发生中段安装不到位,人为减小水泵总窜量,轻则降低水泵效率,重则引起动静摩擦,损坏设备。
* W- A: `: `0 Z4 k0 P2 O 6 ]2 f/ o2 C+ h' J+ R! g
2.2导叶与泵壳的径向间隙测量与调整4 E2 I# ~) ^5 F" `' M/ [1 j7 D
现代高压给水泵的导叶一般采用不锈钢制造,当导叶冲刷损坏严重时,应更换新导叶。新导叶在使用前应将流道打磨光滑,这样可提高水泵效率。导叶与泵壳径向间隙一般为0.04mm~0.06mm。固定导叶的定位销与泵壳为过盈配合,其紧力为0.02mm~0.04mm,与导叶为间隙配合。导叶在泵壳内应被压紧,以防导叶与泵壳隔板平面磨损。为此可在导叶背面沿圆周方向,并尽量靠近外缘均匀地钻3~4孔,加上紫铜钉,利用紫铜钉的过盈量使两平面压紧,如图2a所示。在装紫铜钉之前,先测量出导叶与泵壳之间的轴向间隙,其方法是在泵段的密封面及导叶下面放上3~4根铅丝,再将导叶与另一泵段放上,如图2b所示,垫上软金属用大锤轻轻敲打几下,取出铅丝测其厚度,两个地方铅丝平均厚度之差,即为间隙值。紫铜钉的高度应比测出的间隙值多0.5mm,这样泵壳压紧后,导叶便有一定的预紧力。
$ k, M4 I6 U3 s2.3水泵密封环、导叶套间隙的测量与调整9 q) f+ ? i]
密封环与导叶衬套分别装在泵壳及导叶上,如图3所示。它们的材料多采用黄铜制造,其硬度远远低于叶轮。当与叶轮发生摩擦时,首先损坏的是密封环和导叶衬套。若发现其磨损量超过规定值或有裂纹时,必须进行更换,密封环同叶轮的径向(直径)间隙,随密封环的直径大小而异,一般为密封环内径的1.5‰~3‰;磨损后的允许最大间隙不得超过密封环内径的4‰~8‰(密封直径小,取大比值;直径大,取小比值)。密封环同泵壳的配合,如有紧固螺钉可采用间隙配合,其值为0.03mm~0.05mm;若无紧固螺钉,其配合应有一定紧力,紧力值为0~0.03mm。导叶衬套同叶轮的间隙应略小于密封环同叶轮的间隙(小1/10)。导叶与导叶衬套为过盈配合(过盈量约为0.015mm~0.02mm),还需用止动螺钉紧固。+ {4 v9 q8 {F. M
3、水泵转子部件检修中间隙的测量与调整
$ H! G% j1 Q P3.1水泵轴的弯曲. L6 J0 o6 f% m) E
高压水泵结构精密,动、静部分之间间隙小,转子的转速高,轴的负荷重,因此对轴的要求比较严格。轴的弯曲度一般不允许超过0.02mm,超过0.04mm时应进行直轴工作。泵轴弯曲过大将增加水泵转子的晃度,水泵转子晃度增大势必要增加密封环及导叶衬套间隙,以防治动静磨损,而增大其间隙就会降低水泵效率。且间隙增加到一定量,还会形成涡流,引起水泵振动。
( x% S* \4 R+ E&w7 q3.2 叶轮与泵轴装配间隙
# D! }' x5 n' K7 I- h, T多级给水泵的叶轮与泵轴装配一般是间隙配合,其间隙值在0.00mm~0.04mm。这是由水泵轴及叶轮加工公差决定的。间隙过小或过盈一方面增加组装难度,另外影响转子部件热膨胀,增加水泵转子后天性晃度的产生引起转子质量不平衡。间隙过大增加水泵转子晃度,造成水泵转子动平衡不稳定。叶轮内孔与轴的配合部位,由于长期使用和多次拆装,其配合间隙将增大,此时可将配合的轴段或叶轮内孔用喷涂法修复。
) }( I. ~3 C+ h7 @- n \% Q- X3.3泵轴键及键槽间隙的调整
9 S2 I e8 G0 d9 {' d水泵叶轮与泵轴靠键传递转动。键和泵轴键槽应该是过盈配合,紧力在0.00mm~0.03mm。键和叶轮键槽应是间隙配合,其值也在0.00mm~0.03mm。* ~&p5 t* e- U- Z6 a
3.4 转子小装0 A: G4 kA+ _/ g" S/ g
a)小装的目的
: K8 {5 u0 {&z转子小装也称预装或试装,是决定组装质量的关键。其目的为:测量并消除转子紧态晃动,以避免内部摩擦,减少振动和改善轴封工况;调整叶轮之间的轴向距离,以保证各级叶轮的出口中心对准;确定调节套的尺寸。$ a% ~: j! d' Y0 u
b)转子套装件轴向膨胀间隙的确定, ^B1 j5 W7 K* ~" e
因为转子套装件与泵轴材质不一样,另外,泵轴两端均在泵体以外。所以在热态下,泵轴与转子套装件膨胀不一样,一般情况下,转子套装件膨胀量大于泵轴,所以在转子组装时要对转子套装件留有热膨胀间隙。转子的膨胀间隙的数值是根据转子的长短及水温确定的。一般在10个叶轮左右的转子其膨胀间隙在1mm左右。膨胀间隙过大,则不能很好紧固转子套装件,膨胀间隙过小,则可能造成转子热态下的弯曲,造成动静摩擦,损坏设备。4 I* Q: D9 U2 i
c)小装前的检查
/ O9 o( @3 s) s- d! I: N+ XS检查转子上各部件尺寸,消除明显超差。轴上套装件晃度一般不应超过0.02mm。对轴上所有的套装件,如叶轮、平衡盘、轴套等,应在专用工具上进行端面对轴中心线垂直度的检查。如图4a所示,假轴与套装件保持0.00mm~0.04mm间隙配合,用手转动套装件,转动一周后百分表的跳动值应在0.015mm以下,用同样方法检查另一端面的垂直度。也可不用假轴,将装件放在平板上测量,如图4b所示,这样的测量法不能得出端面与轴中心线的垂直误差,得出的是上下端面的平行误差。&Q1 @" L+ y( J, o+ ?- \
d)水泵转子晃动度的测量
0 V# W( |3 h+ F! V- }/ Q3 v" x做好上述准备工作后,将套装件清扫干净,并按从低压侧到高压侧的顺序依次装在轴上,拧紧轴套锁母,留好膨胀间隙(对于热套转子,只装首、末两极叶轮,中间各级不装)。然后分别测出各部位的晃动,如图5所示。各处的晃动允许值见表1。&x7 J&t8 r g6 Q
0 e5 u, [6 ?4 K$ C! J
转子小装晃度符合要求后,应对各部件相对位置做好记号,叶轮要打好字头,依次拆除,等待总装。
5 y. n: |+ |% ~4、水泵芯包组装及总装间隙的调整 1 d: y- s, k" N&Y1 X
4.1转子总窜量的测量|% M [9 Q9 x/ ?7 Y* ~
在芯包组装过程中要对每级叶轮进行总窜量测量以保证水泵轴向间隙,组装过程中最大与最小窜量的偏差不能超过0.50mm,否则就得检查原因并消除。水泵总窜量关系到叶轮出口中心线与导叶入口中心线的对中,直接影响水泵的效率及水泵的运行周期。水泵芯包组装完毕穿入外壳体内,水泵进出口端安装完毕并将拉紧螺栓全部拧紧后,还要作一次总窜量的测量,此时不装轴承及轴封,也不装平衡盘,而用专用套代替平衡盘套装在轴上,并上好轴套螺母,在轴端装一百分表,然后拨动转子,转子在前后终端位置的百分表读数差即是水泵的总窜量。测出的窜量数值与分级窜量进行比较,如有出入要分析原因并消除。
8 e7 P7 _8 C+ V: B) O% H! i) i8 j4 o3 P4.2转子轴向位置(半窜量)的调整0 s7 q [7 C: W0 o8 X&b# u. l' E
完成转子总窜量的测量调整后,将平衡盘、调整套装好并将锁母紧固到小装位置,架上百分表,前后拨动转子,百分表读数差即为转子半窜量。转子半窜量应为总窜量的一半,如半窜量与总窜量不符,应对调整套进行调整使之符合。) C&cr! d( P- _$ N7 a' t
4.3工作窜量的调整z- H! |# L' R( s
大型给水泵都装有工作窜量调整装置,有的给水泵用推力瓦进行调整,有的给水泵用推力轴承进行调整,测量方法与转子测总半窜量方法一样,在推力轴承(或推力瓦)工作面或非工作面进行加减垫即可对工作窜量进行调整。一般给水泵工作窜量取0.8mm~1.2mm。当泵启动与停止而平衡盘尚未建立压差时,叶轮的轴向推力由推力轴承的工作瓦块承受。平衡盘一旦建立压差,叶轮的轴向推力就完全由平衡盘平衡,而推力盘与工作瓦块脱离接触。要达到这样的要求,将转子推向进口侧,使推力盘紧靠工作瓦块,此时平衡盘与平衡座应有0.01mm的间隙(图6)。若间隙过大或无间隙,可调整工作瓦块背部的垫片,也可调整平衡盘在轴上的位置。推力轴承在运行时的油膜厚约为0.02mm~0.03mm,要使推力轴承在泵正常运行时不工作,平衡盘与平衡座在运行时的间隙应大于0.03mm~0.045mm,只有这样推力盘才能处于工作瓦块和非工作瓦块不投入工作。如果推力轴承仍然处于工作状态,则应重新调整平衡盘与平衡座的轴向间隙。
: {# J! O8 o" ?]5 [ 0 `( z, W6 ]4 Uy2 Q* k
推力盘与非工作瓦块的轴向间隙远远小于转子叶轮背部间隙(即半窜量),当水泵因汽蚀或工况不稳而产生窜轴时,推力盘与非工作瓦块先起作用,不致发生转子与泵壳相摩擦的故障。 f, l, |&S2 q# d?
4.4水泵径向间隙的调整&Z0 Cu4 _' v' h7 ~v
泵体装完后,将两端的端盖、瓦架装好,即可调整转子与静子的同心度(抬轴)。3 d% z: c, F9 ?: u. D5 I
对于转子与静子的同心度要求是:半抬等于总抬量的一半或者稍小一点(考虑转子静挠度),瓦口间隙两侧相等且四角均匀。8 y' x6 i, S$ F/ t v
抬轴的测量:未装轴瓦前,在两端轴承架上各装1只百分表,表的测杆中心线要垂直于轴中心线并接触到轴颈上。用撬棍在轴的两端同时平稳地将轴抬起,其在上下位置时百分表的读数差,就是转子的总抬量。
! O/ l( D6 _8 m1 c将转子撬起,放入下瓦,此时百分表的读数应为转子半抬量,并且应该是总抬量的一半,否则就需进行调整。调整时如果轴承架下有调整螺栓,则只需松、紧螺栓即可。若无调整螺栓,则可调整轴瓦下面的垫片厚度。
4 i6 [7 n% a7 `7 FO" l ]对于转子与静子两侧的同心度,一般借助轴瓦两侧瓦口间隙是否均匀来认定。放入下瓦后用塞尺测量轴瓦4个瓦口间隙,调整均匀且瓦口单侧间隙应为轴瓦顶部间隙的一半。 s+ |4 m' q' a* E/ j' U/ T
4.5 轴瓦及机械密封间隙的调整
! [' l+ t" c&b. z9 W5 X3 v轴瓦间隙紧力的调整参照解体过程所说的要求进行调整。机械密封的间隙调整原则是:机械密封静环预紧力的压缩量是总压缩量的一半,调整方法是将水泵转子推向水泵低压侧,调整机械密动环与泵轴密封圈的紧力,保证水泵高低压侧机械密封的预紧力。
8 [% Z7 H/ V9 S$ Y* j# g0 r% w5、其它间隙的调整
j/ R* X3 f2 H/ T* t2 [: T5.1联轴器中心
2 OR, x8 ^7 a$ v&R给水泵联轴器中心的调整是水泵检修中的一个重要的间隙调整,中心调整不当直接危害是水泵的振动加大。联轴器中心一般要求外园偏差小于0.05mm,两对轮张口偏差小于0.04 : u7 E$ E5 N% ]" D* V% t, \4 n" b! \
发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。
一、推力轴承
对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济的方法。即使采用其他平衡装置,考虑到总有一定的残余轴向力,有时也装设推力轴承。
二、平衡孔或平衡管
如图1所示,在叶轮后盖板上附设密封环,密封环所在直径一般与前密封环相等,同时在后盖板下部开孔,或设专用连通管与吸入侧连通。由于液体流经密封环间隙的阻力损失,使密封下部的液体的压力下降,从而减小作用在后盖板上的轴向力。减小轴向力的程度取决于孔的数量和孔径的大小。在这种情况下,仍有10~15%的不平衡轴向力。要完全平衡轴向力必须进一步增大密封环所在直径,需要指出的是密封环和平衡孔是相辅相成的,只设密封环无平衡孔不能平衡轴向力;只设平衡孔不设密封环,其结果是泄漏量很大,平衡轴向力的程度甚微。
平衡孔示意图
采用这种平衡方法可以减小轴封的压力,其缺点是容积损失增加(平衡孔的泄漏量一般为设计流量的2~5%)。另外,经平衡孔的泄漏流与进入叶轮的主液流相冲击,破坏了正常的流动状态,会使泵的抗汽蚀性能下降。为此,有的泵体上开孔,通过管线与吸入管连通,但结构变得复杂。
采用上述平衡方法,轴向力是不能达到完全平衡的,剩余轴向力需由泵的轴承来承受。用平衡孔平衡轴向力的结构使用较广,不仅单级离心泵上使用,而且多级离心泵上也使用。但由于轴向力不能完全平衡,仍需设置止推轴承,且由于多设置了一个口环,因而泵的轴向尺寸要增加,因此仅用于扬程不高,尺寸不大的泵上。
三、双吸叶轮
单级泵采用双吸式叶轮后,因为叶轮是对称的,所以叶轮两边的轴向力互相抵消。但实际上,由于叶轮两边密封间隙的差异,或者叶轮相对于蜗室中心位置的不对中,还是存在一个不大的剩余轴向力,此轴向力需由轴承来承受。
四、背叶片
泵背叶片是加在后盖板的外侧,即相当于在主叶轮的背面加一个与吸入方向相反点的附加半开式叶轮,如下图。为了便于铸造,这种背叶片通常都是做成径向的,也有做成弯曲的。叶轮加背叶片之后,背叶片强迫液体旋转,液体的旋转角速度增加,改变了后盖板的压力水头分布减小了不平衡力。剩余轴向力仍需由轴承来承受。
背叶片示意图
背叶片除平衡轴向力外,同时能减小轴封前液体的压力。装背叶片泵的扬程大约提高1~2%,使泵效率下降2~3%。背叶片还有防止杂质进入轴封的功能,输送含杂质液体的泵中常采用。
五、叶轮对称布置
该方法主要用于多级泵。泵的所有叶轮平均分为两个方向布置,面对面或者背靠背地按一定次序排列起来(如下图),可使轴向力相互平衡。
叶轮对称布置示意图
布置叶轮的原则是:
(1)级间过渡流道不能很复杂,以利于铸造和减小阻力损失;
(2)两端轴封侧应布置低压级,以减小轴封所受的压力;
(3)相邻两级叶轮间的级差不要过大,以减小级间压差,从而减小级间泄漏。
节段式泵对称布置可平衡轴向力,但级间泄漏增加。对称布置叶轮,只有在结构完全相同的条件下,才能完全平衡,当各级的轮毂轴台不同时,也将产生一定的轴向力。
六、平衡鼓
平衡鼓是个圆柱体,装在末级叶轮之后,随转子一起旋转。平衡鼓外圆表面与泵体间形成径向间隙。平衡鼓前面是末级叶轮的后泵腔,后面是与吸入口相连通的平衡室。这样作用在平衡鼓上的压差,形成指向右方的平衡力,该力用来平衡作用在转子上的轴向力。
七、平衡盘
平衡盘可在不同工况自动完全地平衡轴向力,故广泛地应用于多级离心泵。如图5所示,在轴套与泵体间存在一个间隙,在盘端面与泵体间有一个轴向间隙bo,平衡盘后面有与泵吸入口相通的平衡室。径向间隙b前的压力是末级叶轮背面的压力p,液体经过间隙b后,压力降低为p',径向间隙的压力降为△p1=p-p',液体通过轴向间隙b0后,压力再下降至po轴向间隙两端的压力降为△p2=p'-po,其中po和泵吸入口的压力接近。整个平衡盘装置的压力降为△p=△p1+△p2。这样,在平衡盘上作用一个平衡力,方向与泵的轴向力相反。
平衡盘示意图
平衡盘的工作原理是:
当轴向力大于平衡盘的平衡力时,离心泵转动部分向左移,轴向间隙bo随之减少,流体流过间隙的阻力加大,整个平衡装置的总阻力系数也因此加大。但是,△p不变,所以泄漏量q减少,结果是△p1减少而△p2增大,从而增加了平衡力,随着转动部分不断向左移动,平衡力不断增加,到达某一位置时,平衡力和轴向力达到平衡。当轴向力小于平衡力时,转动部分向左移动,与上述过程相反,也使离心泵处于轴向平衡状态。所以装有平衡盘装置的离心泵,一般不配止推轴承。
大家都知道多级泵是水泵的一种,那么水泵是什么?有什么用途?简单来说,水泵是一种通过一系列组合装置把原动机的机械能转化成使液体增加压力来达到提升液体、输送液体目的的一种电动机械设备。水泵按工作原理和结构形式可以分为:叶片式泵、容积泵和其它泵,叶片式泵又分为:离心泵、漩涡泵、混流泵、轴流泵,而多级泵就属于离心泵的一种。
离心泵是通过泵的转子部分的高速旋转产心的离心力来甩出或传递介质到出口管道。离心泵的转子最主要由两大部件组成,一个是叶轮,二是泵轴,泵轴通过联轴器和电动机连接,提供动力,而叶轮就是用来甩水的部件,业内用“级”来表示叶轮的数量,讲到这里,大家应该就明白了,多级泵就是配有多个叶轮的离心泵,全称多级离心泵,简称多级泵。多级泵按结构形式和工作原理,市场上目前主要有自平衡多级泵、普通卧式多级泵、多级中开泵、立式多级泵,几种多级泵,接下来分别介绍这几种多级泵的结构图及结构组成。
一、自平衡卧式多级泵
DP型自平衡多级泵图片
DYP自平衡多级油泵图片DF耐腐蚀不锈钢多级泵
MDP自平衡矿用耐磨多级泵图片GDP自平衡多级锅炉给水泵图片
二、普通卧式多级泵
D型普通多级泵图片
DG型多级锅炉泵图片DF耐腐蚀多级泵图片MD矿用耐磨多级泵图片(客户使用中)
DY型多级油泵图片
三、立式多级泵
gdl立式多级泵(管道泵)
cdl/cdlf不锈钢立式多级泵
四、卧式中开式多级泵
dk中开式多级泵
以上就是长沙中联泵业为大家展示的部分多级泵图片,更多级泵图片,欢迎到https://www.zbpumps.com/查看。接下来介绍以上几种多级泵的结构图及结构组成。
一、自平衡多级泵结转构图
自平衡多级泵剖面结构图自平衡多级部结构示意图
自平衡多级泵结构组成及特点
1、定子部分:主要由吸入段(进水段)、中段、吐出段(出水段)、导叶、次级进水段、填料函体(尾盖)和轴承体等分别用拉紧螺栓联接成一体,中段由高强度的穿杠螺栓和进出水段联接。泵的进水段、中段、出水段之间的密封面均采用二硫化钼润滑脂金属面硬密封。
2、转子部分:主要由轴、叶轮、节流轴部件、轴承及轴套等组成。正、反两组叶轮对称布置轴中心的两端,在运行中产生的轴向推力可以通过正、反叶轮基本抵消,无需采用平衡盘结构就能实现泵腔内巨大轴向推力的自动平衡,残余轴向力由一对背靠背的角接触轴承承受。
3、泵的密封
3.1泵吸入段(进水段)、中段、吐出段(出水段)、次级进水段之间的静止结合面用密封胶或二硫化钼来密封。
3.2泵各级间采用节流密封。
3.3泵的两侧轴封采用软填料密封。
3.4采用挡水圈挡水,防止水进入轴承。
4、轴承部分
自平衡多级泵型的整个转子由驱动端的圆柱滚子轴承《GB/T283-94》、末端采用《GB/T292-94》角接触球轴承支撑,轴承采用CD30或CD40机械油加入轴承体内至油镜中心润滑。由于轴承采用了《GB/T292-94》角接触球轴承,所以组装完成的泵转子无轴向窜动量。
二、平衡盘结构多级泵(简称普通多级泵)结构图
普通卧式多级泵结构图
普通卧式多级泵剖视结构图
普通多级泵结构组成及特点
普通多级泵的泵体部分有:进水段(低压端)、中段(含导叶)、出水段(高压端内嵌平衡环)、尾盖组成;转子部件有:主轴、叶轮、护轴套、平衡盘、平衡套、轴承挡套、叶轮挡套等主要零部件组成。
1、D型卧式多级泵为多级分段式,其吸入口位于进水段上,成水平方向,吐出口在水段上垂直向上,其扬程可根据使用需要而增减水泵级数。水泵装配良好与否,对性能影响关系很大,尤其是各个叶轮的口出与导翼的进出中心,其中稍有偏差即将使水泵的流量减少,扬程降低效率差,故在检修装配时务必注意。
2、D型卧式多级泵主要零件有:进水段、中段、出水段、叶轮、导翼挡板、出水段导翼、轴、密封环、平衡环、轴套、尾盖及轴承体。
进水段、中段、导叶挡板、出水段导翼、出水段及尾盖均为铸铁制成,共同形成泵的工作室。
3、D型卧式离心水泵叶轮为优质铸铁制成,内有叶片,液体沿轴向单侧进入,由于叶轮前后受压不等,必然存在轴向力,此轴向力由平衡盘来承担,叶轮制造时经静平衡试验。
4、轴为优质炭素钢制成,中间装有叶轮,用键、轴套及轴套螺母固定在轴上。轴的一端装联轴器部件,与电机直接连接。
5、D型卧式离心水泵密封环为铸铁制成,防止水泵高压水漏回进水部分,分别固定在进水段与中段之上,为易损件,磨损后可用备件更换。
6、平衡环为铸铁制成,固定在出水段上,它与平衡共同组成平衡装置。
7、D型卧式离心水泵平衡盘为耐磨铸铁制成,装在轴上,位于出水段与尾盖之间,平衡轴向力。轴套为铸铁制成,位于填料室处,作固定叶轮和保护泵轴入用,为易损件,磨损后可用备件更换。轴承是单列向心球轴承,采用钙基润滑脂润滑。
三、GDL型立式多级泵结转构图
GDL立式多级泵结构图
GDL立式多级泵结构特点
1、GDL型立式多级泵为立式结构,具有占地面积小的特点,泵重心重合于泵脚中心,因而运行平稳、振动小、寿命长。
2、GDL型立式多级泵口径相同且在同一水平中心线上,无需改变管路结构,可直接安装在管道的任何部们,安装极为方便。
3、电机外加防雨罩可直接置于室外使用,而无需建造泵房,大大节约基建投资。
4、GDL型立式多级离心泵扬程可通过改变泵级数(叶轮数量)来满足不同要求,故适用范围广。
5、轴封采用硬质合金机械密封,密封可靠,无泄漏,机械损失小。
6、高效节能,外形美观。
7、注50口径以上内件铸件成形。
四、DK型中开式多级泵结转构图
1-泵盏 2-泵体 3-轴承体 4-轴套 5-叶轮 6-泵轴 7-轴封装置
DK中开式多级泵结构特点
DK型多级中开泵为水平中开。泵吸入口和吐出口均位于泵中开面下方泵壳下部,水平地位于两侧与轴心线成垂直方向,检修时无须拆下电机和管路,操作十分方便。轴的支承有滚动轴承和滑动轴承。滚动轴承的除100DK230和250DK240型泵为稀油润滑外其余均为油脂润滑,250DK360型泵为滑动轴承稀油强制循环润滑(配有稀油站)。泵轴封可为填料密封或机械密封。
旋转方向:从电机端看,250DK240,250DK360型泵为逆时针方向旋转,即吸入口在左,吐出口在右。其余均为顺时针方向旋转。
零件材质:250DK360为铸钢和铸不锈钢,其它均为铸铁。
成套范围:成套供应泵、电机、底座、止回阀、闸阀。
高压给水泵的平衡盘主要用以平衡轴向力。
高压给水泵平衡盘工作原理:当叶轮产生的轴向力大于平衡盘上的轴向力时,泵轴向泵入口方向移动,使平衡盘和平衡圈之间的间隙bo减小,这时高压液体通过间隙bo时的阻力增大,泄漏量减小,使平衡盘和平衡圈之间的压力上升,增大了平衡盘上的平衡力,直到平衡力与轴向力相等。轴向间隙bo保持不变。反之当轴向力小于平衡力时,泵轴向右移动,间隙bo增大,高压液体泄漏量增大,平衡盘和平衡圈之间的压力下降,作用在平衡盘上的平衡力减小,直到与叶轮上产生的轴向力相等为止,保持轴向间隙bo在一定间隙下运行。如下图所示:
水泵动静平衡盘,就是平衡水泵轴向力的装置。水泵在工作时,总是存在由出口端向进口端的压力,为了缓解这个压力,以减少磨损,所以在水泵设计时加装了平衡盘以减少这个作用力。
平衡盘瓢偏后,其端平面与轴心线就不垂直,组装后使平衡盘与平衡环之间出现张口,无法平衡轴向推力,使平衡盘磨损电机过负荷。因此,凡有平衡盘装置的水泵都要进行瓢偏测量。
发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。
在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。
目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。
平衡盘瓢偏后,其端平面与轴心线就不垂直,组装后使平衡盘与平衡环之间出现张口,无法平衡轴向推力,使平衡盘磨损电机过负荷。因此,凡有平衡盘装置的水泵都要进行瓢偏测量。
发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。
5 y0 BL$ XQ! H, E目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。
给水泵的解体 : @X n2 D+ m# U+ R$ q6 G
水泵检修解体阶段的测量目的在于:2 L( Z. ^&vc' L4 n
a)与上次检修时的数据进行对比,从数据的变化分析原因制定检修方案;
1 T( G+ m' o$ J+ ~ ^b)与回装时的数据进行对比,避免回装错误。
' B( c- C% A3 x1 I( M- ?( }1.1轴瓦的间隙紧力及瓦口间隙8 X, W. X. P5 G
轴瓦顶部间隙一般取轴径的0.15%~0.2%,瓦口间隙为顶部间隙的一半。
瓦盖紧力一般取0.00mm~0.03mm。间隙旨在保证轴瓦的润滑与冷却以及避免轴振动对轴瓦的影响。如果在解体过程中发现与标准有出入,应进行分析,制定针对性处理方案并处理。
平衡鼓
平衡鼓是个圆柱体,装在末级叶轮之后,随转子一起旋转。平衡鼓与平衡套之间形成径向间隙。平衡鼓前面是末级叶轮的后腔,后面是与吸入口相连通的平衡室。这样作用在平衡鼓上的压差形成指向右方的平衡力F,该力用来平衡作用在转子上的轴向力A。
平衡鼓由于在设计时,其计算不完全符合实际或工况变化时,平衡鼓产生的平衡力不可能完全等于轴向力,残余轴向力由推力轴承来承担。平衡鼓与平衡套之间的间隙常取0.2mm~0.3mm.平衡鼓的泄漏量很大,约为设计点流量的5%~25%。
平衡盘
平衡盘像一个浮动的液体润滑轴承,随着转子可以移动(采用平衡盘装置的泵,其两端轴承是不限制轴向移动的),平衡盘和平衡鼓不同,它能自动平衡轴向力,这是因为平衡盘两个间隙相辅相成的结果。
平衡盘泄漏量很大,一般水泵的泄漏量是泵设计流量的4%~10%,高扬程小流量的泵高达20%。当运行一段时间隙磨损后,泄漏量还要增加。影响泄漏量的因素:①对一定的平衡盘,级数越大,泄漏量越大。②泵在小流量区域运行,泄漏量增加。③b1大时,泄漏量大。④L1小时泄漏量大。⑤b2增大泄漏量大。
水泵叶轮拆装图解
如何拆水泵叶轮?
家用水泵叶轮怎么拆
家用自吸泵叶轮拆卸
水泵叶轮怎么拆?拆装图片
水泵叶轮拆卸顺序:
1、柠下吐出侧轴承压盖上的螺栓和吐出段、填料函体、轴承体三个件之间的联接螺母卸下轴承部件:
2、拧下轴上的圆螺母,依次卸下轴承内圈、轴承压盖和挡套后,卸下填料体(包括填料压盖、填料环和填料等):
3、依次卸下轴上的O型密封较圈、轴套、平衡盘和键后,卸下吐出段(包括末级导叶、 平衡环等)
4、卸下末级叶轮和键后,卸下中段(包括导叶):按同样方法继续卸下其余各级的叶 轮、中段和导叶,直到卸下首级叶轮为止:
5、拧下吸水段与轴承体的联接螺母和轴承压通上的螺栓后,卸下轴承部件
6、将轴从吸入段中抽出,拧下轴上的固定螺母,依次将轴承内圈、O型密封圈、轴套和挡套等卸下。
水泵叶轮拆装图解
找两块厚点的钢板条,靠近水泵的轴心夹好,两端放到稳固的东西上,用氧炔焰烤一下,在用个东西顶住轴往下大,很容易就出来了,如果是生铁的叶轮不要加太热,150度就可以了。
如何拆水泵叶轮?
叶轮前端有没有锁母?如果没有按以下步骤:
第一步:卡住联轴器!
第二部:逆时针转动叶轮,就能将叶轮松下。如果不好松,可以用撬棍卡住液道,用锤子敲击,但不能太过用力,以免损伤叶轮。
如果有锁母
第一步,松下锁母!
第二部:使用拉轴器将叶轮从轴上落下!
家用水泵叶轮怎么拆
有一种带3个爪子的工具,卡在叶轮上,把叶轮拉下来。切不可敲击,因为叶轮套在轴上,把轴弄变形,电机就报废了。
家用自吸泵叶轮拆卸
卸掉偏盖后,在卸掉泵体的三个固定螺丝,再用俩爪专用工具轻轻松松就可拔掉。
1、自吸泵,属自吸式离心泵。它具有结构紧凑、操作方便、运行平稳、维护容易、效率高、寿命长,并有较强的自吸能力等优点。管路不需安装底阀,工作前只需保证泵体内储有定量引液即可。不同液体可采用不同材质自吸泵。自吸泵的结构类型很多,其中熔盐 自吸泵泵、 真空泵、液下泵、 计量泵、齿轮泵、 耐腐蚀泵、 耐酸泵、 消防泵向旋转方向流动。
2、工作原理是:水泵启动前先在泵壳内灌满水(或泵壳内自身存有水)。启动后叶轮高速旋转使叶轮槽道中的水流向涡壳,这时入口形成真空,使进水逆止门打开,吸入管内的空气进入泵内,并经叶轮槽道到达外缘。
3、产品特点:排污能力强:特殊的叶轮防堵设计,确保了泵高效且无堵塞。高效节能:采用优秀水力模型,效率比一般自吸泵高3~5%。自吸性能好:自吸高度比一般自吸泵高1米,且自吸时间更短。
2、装上推力轴承让转子串向低压侧,此时的百分表读数就是平衡盘间隙。
3、可以通过在推力轴承或推力盘内侧加减垫片调整间隙大小。
多级锅炉给水泵广泛用于工矿企事业单位的锅炉给水和城市生活供水。水泵主要零件有轴、轴套、进水段、叶轮、导叶、压盖、密封环、中段、出水段、平衡环、平衡盘、尾盖。
进水段、中段、出水段及尾盖均为铸铁制成,共同形成泵的工作室。
多级锅炉给水泵(3张)
叶轮为铸铁制成,内有叶片,液体沿轴向单侧进入,由于叶轮前后受压不等,必须存在轴向力,此轴向力由平衡盘来承担,叶轮制造时经静平衡试验。
轴为优质碳素钢制成,中间装有叶轮,用键、轴套和轴套螺母固定在轴上。轴的一端安装联轴器部件,与电机直接联接。从转动方向看时,泵轴为顺进针方向旋转。
密封环为铸铁制成,防止水泵中高压水漏回进水部分,分别固定在进水段与中段之中,为易损件,磨损后可用备件更换。
平衡环为铸铁制成,固定在出水段上,它与平衡盘共同组成平衡装置。
平衡盘为耐磨铸铁制成,装在轴上,位于出水段与尾盖之间,平衡轴向力。
轴套为铸铁制成,位于两填料室处,作固定叶轮和保护泵轴之用。为易损件,磨损后可用备件更换。
轴承是用单列向心球轴承,采用钙基黄油润滑。
多级锅炉给水泵结构图
填料密封由进水段和尾盖上的填料室,填料压盖,填料环及填料等组成,少量高压水流入填料室中起水封作用。填料的松紧程度必须适当,不可压的太紧,也不可太松,以液体能一滴一滴地渗出为准。如果填料太紧,轴套容易发热同时耗费功率。填料太松,由于液体流失