建材秒知道
登录
建材号 > 水泵 > 正文

离心泵的导叶起什么作用

落后的红酒
激动的裙子
2022-12-31 12:45:05

离心泵的导叶起什么作用?

最佳答案
魔幻的绿草
苹果小伙
2025-08-15 11:55:50

导叶是离心泵的转能装置,它的作用是把叶轮甩出来的液体收集起来,使液体的流速降低,把部分速度能头转变为压力能头后,再均匀地引入下一级或者经过扩散管排出。

导叶的作用与蜗壳相同,多用于分段式多级泵中。在多级离心泵中,导叶装入带有隔板的中段中。

导叶按其结构形式可分为径向式导叶和流道式导叶。流道式导叶的正向导叶和反向导叶是铸在一起的,中间有一连续流道,使液体在连续的流道内流动,不易形成死角和突然扩散,速度变化比较均匀,水力性能较好,但结构复杂,制造工艺性差。

导叶大多数用在水力机械中的倒流情况,像水轮机的活动导叶,固定导叶,以及水泵中的导叶。他们的作用都是产生还量(注:固定导叶也可产生部分还量),现在很多学术界可能还不能接受固定导叶的这项功能。

最新回答
壮观的小蝴蝶
粗犷的冰棍
2025-08-15 11:55:50

水泵叶轮拆卸顺序:

1、柠下吐出侧轴承压盖上的螺栓和吐出段、填料函体、轴承体三个件之间的联接螺母卸下轴承部件

2、拧下轴上的圆螺母,依次卸下轴承内圈、轴承压盖和挡套后,卸下填料体(包括填料压盖、填料环和填料等)

3、依次卸下轴上的O型密封较圈、轴套、平衡盘和键后,卸下吐出段(包括末级导叶、 平衡环等)

4、卸下末级叶轮和键后,卸下中段(包括导叶):按同样方法继续卸下其余各级的叶 轮、中段和导叶,直到卸下首级叶轮为止

5、拧下吸水段与轴承体的联接螺母和轴承压通上的螺栓后,卸下轴承部件

6、将轴从吸入段中抽出,拧下轴上的固定螺母,依次将轴承内圈、O型密封圈、轴套和挡套等卸下

防治方法:

一:正确确定水泵的吸水高度,以保证叶轮进口处的压力不低于汽化压力。

二:尽量减小吸水管路中的损失水头。因为该项损失越大,水泵进口处的压力降低也越多,水就易于汽化。因此要尽量缩短吸水管的长度,减少管路上的附件,管内壁要光滑并适当加大吸水管直径等。

三:水泵落井安装。如果由于吸水过高而造成气蚀,可把泵安装在井下或地面以下,靠近吸水水面处。

四:利用射流提高进口的压力。

五:尽量使水泵在额定的条件下运行。如果水泵在低于额定扬程或大于额定转速下运行,水泵流量必然大于额定流量,叶轮进口处的水流速度必然提高,该处压力将进一步降低,因此,不能随意降低水泵扬程和提高水泵的转速。

六:在水泵的进口处设置诱导轮,或采用抗气蚀的水泵零部件等。

以上内容参考 百度百科-水泵叶轮

忐忑的小蘑菇
无聊的棒球
2025-08-15 11:55:50
1 水泵定子部件检修的间隙调整

针对水泵定子部件检修,要优先检查各中段止口径向间隙,通过分析数据,看是否进行调整。检修人员首先检查中段止口的尺寸,分析其是否在正常范围,一般情况下,正常范围在 0.04 mm~0.06 mm,如果超出 0.1 mm,那么就表示该部件存在问题,要及时解决。中段止口在水泵使用中,具有重要作用,其能够正常运作,直接影响水泵的工作效率。

其次是针对导叶与泵壳的检修。根据水泵的制造特点,是由 QT 技术制造导叶,然后投入使用。如果在水泵应用中,导叶受到严重冲刷,那应及时更换导叶,避免其产生不良的影响。需要注意的是,新换的导叶在安装前,需要打磨和清理流道,保证自身的光滑性,发挥自身作用。检修人员要注意导叶与泵壳之间的间隙,如果在 0.04 mm~0.06 mm,就代表该部位正常运行,没有出现问题。导叶与泵壳一定要进行压紧处理,从而降低磨损情况的产生。象顺着圆周方向进行背面处理,远离边缘位置等操作,都能够实现其目的。

最后是水泵密封环、导叶套间隙的调整。这部分部件同样是相互影响,在泵壳上安装密封环,将导叶套安到导叶上,需要注意使用的材料要符合水泵机规定。这部分部件的硬度要求较高,其在使用中会与叶轮产生较大摩擦,如果发现叶轮的前后脐子损坏,那代表着该部件已经遭到较重磨损。由此要针对磨损的具体情况,采取不同的维修方案,像磨损后的最大间隙要在控制范围内,确保导叶套与叶轮之间留有足够的空间,熟练应用紧固螺钉与止动螺钉。

2 水泵转子部件检修的间隙调整

2.1 水泵的弯曲

水泵设备在应用中,其转子速度较高,导致用中轴体承担较大的负荷,因此为了保证部件的整体质量,要严格要求轴的形态。如果其弯曲度过大,像已经超过规定 0.02 mm 的一倍,那么需要及时进行校直处理。这种弯曲的情况,会导致水泵转子出现跳动,而弯度越大,跳动幅度越大,最后影响密封环与导叶套之间的间隙。这种问题得不到及时处理,就会加大缝隙,甚至在水泵使用中,出现明显的旋涡,造成振动。

2.2 叶轮与泵轴装配间隙

在水泵使用中,部分为多级泵,这种设备应用中叶轮与泵轴装配通过间隙配合,范围需要控制在 0.04 mm 以内。间隙过大或过小都会增加组装难度,象间隙过大会增加水泵转子的跳动幅度,过小会加大摩擦。因设备使用造成的间隙增大,可以通过喷涂修复方法进行维修,主要是针对轴段以及叶轮内孔这些部位。

2.3 转子小装

2.3.1 小装前检查

检修人员要检查转子各部件的尺寸,能够及时消除差异,有效控制间隙的数值。一般情况下,轴上各部件的跳动不会超出 0.03 mm,那么对轴上所有零件,都应进行中心线垂直度的检查,确保芯轴与各套装部件之间,保证有足够的距离并在可控范围内。检修人员用手转动套装件,像转动一周后,其在百分表上会显示出 0.015 mm 以下。要想通过同种方法实现垂直度检查,也可以将套件放置在平板上,然后进行测量。但需注意,这种测量方法无法得到平板面层与轴中心线的垂直误差,而是上下端面的平行误差,避免错误判断。

2.3.2 转子检修

针对转子部件的检修,可以通过转子小装实现,其也是影响组装质量的主要内容。这种操作是为了消除转子转动中的不平衡力矩以及力偶矩,从而减少转子内部带来的磨损。维修人员需要调整叶轮之间的轴向距离,对准叶轮的中心线,准确调整尺寸。部分转子套部件的轴向膨胀间隙,也需要时刻关注,引起材质的不同,在热状态下,不同的部件膨胀的数据不一致。一般情况下,转子套的膨胀程度要大于泵轴的膨胀程度,因此安装过程中,要对针对转子套预留出足够的膨胀间隙。其中膨胀间隙也应得到控制,如果膨胀间隙过大,就无法紧固转子套部件,而间隙过小,就可以导致转子出现热弯度,进一步损害设备。

除了以上 2 点内容,还应做转子跳动、叶轮节距以及转子串动平衡的测量,并进行合理调整。在转子跳动测量中,要清扫套装件,然后按照一定顺序,从低压侧到高压侧,将其依次安装到轴上,拧紧套件的螺母进行测量。针对叶轮节距测量中,要测量每级叶轮间距的轴向间隙,控制其偏差要低于 0.5 mm。转子串动平衡,需要做好部件的位置标记,测量后,也是按照顺序依次拆卸。

3 水泵组装与总装间隙的调整

3.1 基准线

在水泵设备的组装中,要规范基准线,能够正确处理窜量关系。其影响叶轮出口中心线以及导叶入口中心线是否正常使用,关系水泵的运作效率。针对水泵组装,要从小零部件开始,将转子部分放入进水段,然后安装轴承与压盖,最后拧紧螺母。安装流程需要严格遵守设备运作顺序,最后安装出水段,保证转子与定子的同心度保持一致。另外针对转子与定子的要求为,使用塞尺检查平衡套与其他格挡之间间隙,需要保证其在合理范围。对于总窜量的测量,应避免平衡盘套的其他安装,然后选取六角螺母,最后运用百分表,转动转子读取窜量的数值,一旦其数值与规定不符,则说明水泵运行存在问题应及时处理。

3.2 转子轴向位置

维修人员调整好转子总窜量之后,要将之间的测量操作到最小位置,并摆放百分表,进行转子半窜量的测量,然后针对数值进行故障调整。

3.3 工作窜量

大型水泵在应用中,都有固定的工作窜量,如果其超出规定范围,可以使用推力轴承进行调整,具体可应用加减垫层的方法实现工作面与非工作面的数值控制。水泵工作的常规窜量是 0.8 mm~1.2 mm,如果水泵启动和停止时,没有与平衡盘建立联系,那么该过程中的推力都有工程瓦块承担。如果与平衡盘建立压差,那么这种推力就会有平衡盘平衡。另外平衡盘与平衡座之前也应具有一定间隙,如果间隙超出常规,要调整瓦块背部的垫片或是平衡盘的轴线。通过这种方法促使平衡盘正常运作,有合理的间隙。

4 结语

水泵的正常运作能够保证整个生产的进行,针对水泵各个零部件的检修,调整间隙的控制,可以提高水泵的运作效率。水泵运作中的间隙调整,需要结合具体情况进行分析,有针对性地采取措施,从而达到理想的效果。

优美的雪糕
健壮的大树
2025-08-15 11:55:50
水泵叶轮拆卸顺序:

1、拧下吐出侧轴承压盖上的螺栓和吐出段、填料函体、轴承体三个件之间的联接螺母卸下轴承部件。

2、拧下轴上的圆螺母,依次卸下轴承内圈、轴承压盖和挡套后,卸下填料体(包括填料压盖、填料环和填料等)

3、依次卸下轴上的O型密封胶圈、轴套、平衡盘和键后,卸下吐出段(包括末G导叶、平衡环等)

4、卸下末级叶轮和键后,卸下中段(包括导叶)。按同样方法继续卸下其余各级的叶轮、中段和导叶,直到卸下SG叶轮为止。

5、拧下吸水段与轴承体的联接螺母和轴承压通上的螺栓后,卸下轴承部件。

6、将轴从吸入段中抽出,拧下轴上的固定螺母,依次将轴承内圈、O型密封圈、轴套和挡套等卸下。

7、拆卸自吸离心泵叶轮时,需要测量转子轴向窜动量和径向跳动量,测量时需要及时记录。转子转动一圈,同一侧点的较大值到较小值,为该点的跳动量。

8、拆卸叶轮背帽,取下叶轮,拆卸前,仔细确认背帽转向,严禁反向用力损害背帽。叶轮用撬杠撬下时,应该撬在叶轮的肋板处,避免把叶轮撬裂。外观检查叶轮背帽,应该没有咬扣和滑丝现象,如果有应该及时修理并且更换。

9、拆卸叶轮导向平键,检查平键外观应该没有明显变形和缺失,和键槽配合应该符合规定要求,如果没有应该修理或者更换叶轮。

坚定的大树
丰富的夕阳
2025-08-15 11:55:50

当导叶全关后,接力器活塞仍能向关闭侧移动的移动量称为导叶的压紧行程。在多级离心泵中,导叶装入带有隔板的中段中。

导叶按其结构形式可分为径向式导叶和流道式导叶。流道式导叶的正向导叶和反向导叶是铸在一起的,中间有一连续流道,使液体在连续的流道内流动,不易形成死角和突然扩散,速度变化比较均匀,水力性能较好,但结构复杂,制造工艺性差。

导叶大多数用在水力机械中的倒流情况,像水轮机的活动导叶,固定导叶,以及水泵中的导叶。他们的作用都是产生环量(注:固定导叶也可产生部分环量,现在很多学术界可能还不能接受固定导叶的这项功能。

扩展资料

导叶在叶道中间产生了叶道涡,这就相当于离心泵中,轴向旋窝的的存在,对扬程的影响。

导叶的制造一直是大型水轮机组制造面临的一大难题。导叶以往多采用砂型铸造生产,铸件内部质量不稳定,易于产生缩松、缩孔、气孔、夹杂、裂纹等常见铸造缺陷。

导叶普遍的加工方法有三种:砂型铸造,电渣熔铸和锻造导叶。

电渣熔铸导叶与常规砂型铸造、锻造导叶相比,电渣熔铸按照顺序结晶进行凝固,消除普通铸造固有凝固缺陷,尤其对于探伤要求严格的部件,其整体性能高。而且由于电渣精炼和电动力双重作用,所生产部件的基件组织均匀,夹杂物分布弥散,因而具有良好的抗气蚀和抗磨损性能由于电渣精炼作用,所生产部件的整体的冲击性能和疲劳性能也得到了提高。

端庄的大山
害羞的手链
2025-08-15 11:55:50
水泵原理详细介绍

借动力设备和传动装置或利用自然能源将水由低处升至高处的水力机械。广泛应用于农田灌溉、排水以及农牧业、工矿企业、城镇供水、排水等方面。用于农田排灌、农牧业生产过程中的水泵称农用水泵,是农田排灌机械的主要组成部分之一。

类型

根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量,主要有活塞泵、柱塞泵、齿轮泵、隔膜泵、螺杆泵等类型。叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。潜水电泵的泵体部分是叶片泵。其他类型的水泵有射流泵、水锤泵、内燃水泵等,分别利用射流水锤和燃料爆燃的原理进行工作。水轮泵则是水轮机与叶片泵的结合。上述各类水泵中以下列各式较具代表性。

离心泵是利用离心力的作用增加水体压力并使之流动的一种泵。由泵壳、叶轮、 转轴等组成。动力机带动转轴,转轴带动叶轮在泵壳内高速旋转,泵内水体被迫随叶轮转动而产生离心力。离心力迫使液体自叶轮周边抛出,汇成高速高压水流经泵壳排出泵外,叶轮中心处形成低压,从而吸入新的水流,构成不断的水流输送作用。叶轮具有逆旋转方向弯曲的叶片,其结构型式有封闭式、半封闭式和敞开式3种,农用的多为封闭式叶轮,叶片两侧由圆盘封闭。泵体沿出水管方向逐渐扩张成蜗壳形。水流自叶轮一面吸入的称单吸离心泵,自叶轮两面吸入称双吸离心泵。为增加扬程,可将多个叶轮装在同一轴上成为多级离心泵。由前一叶轮排出的水进入后一叶轮的进水口,增压后再从后一叶轮排出,因而叶轮数愈多,压力愈高。有的离心泵带有能自动排除吸水管和泵体内空气的装置,在起动前无需向泵体灌水,称自吸离心泵,但其效率常低于一般离心泵。

离心泵在农田排灌和农牧业供水中应用最广。多用于扬程高而流量小的场合。单级离心泵的扬程为5~125米,排出的流量均匀,一般为6.3~400米3/小时,效率约可达86~94%。

轴流泵

由泵壳、叶轮和转轴等机件构成。也称螺桨泵。叶轮上有螺旋桨状的叶片若干,当叶轮随转轴一起被动力机械驱动旋转时,各叶片将水推向一端,同时又在另一端从水源吸取水,使水产生沿着平行于转轴方向的连续流动,达到不断输送水流的目的。水流压力因叶轮转动作用而提高。由叶轮出来的旋转水流通过固定导叶后,消除了旋转分速度,并由于扩散作用而使其部分动能转换成压力能,推动泵壳内的水流沿轴向上升,由出水管流出。轴流泵多用于扬程低而流量大的场合,扬程范围1~25米左右;流量2.7~60.0米3/秒,效率可达85~90.5%。安装方式有立式、卧式和斜式3种,其中以立式轴流泵应用较多(图2)。 大型轴流泵叶轮轮毂上的旋桨叶片的安装角度可以调节,或借液压传动的转轴在运行中随时间调节,以适应扬程及流量变化的要求,获得较高的生产率,故称可调式轴流泵。

贯流泵是卧式轴流泵的一种。由电动机、减速装置和水泵组成一整体,装设在水下堤坝内部的机坑内,其进出水流道位于一条直线上,近似直圆筒形,水力损失少,提水效率高,且结构紧凑,安装、检修方便,泵站工程简单。圬工泵是一种低扬程轴流泵,除叶轮及其外围的泵壳用金属材料制成以外,进水流道和出水流道均采用砖石或混凝土结构,其扬程在2米以下,流量大、结构简单、造价低、效率高。适用于低洼地区的排涝和灌溉。

混流泵

构造和工作原理兼有离心泵和轴流泵两种类型的特点的一种水泵。叶轮被动力机械带动旋转时,叶片一方面推动着水体,同时又驱使水体旋转产生离心作用。水体在叶片的推力和离心力的作用下产生流动和提高压力。水流由轴向流入叶轮后沿叶片斜向流出,常用于输送排量较大而压力中等的场合。通常有蜗壳式和导叶式两种类型。蜗壳式混流泵的结构同离心泵相似,利用蜗壳形流道将水流通过叶轮后获得的动能转换为压力能,一般中、小型混流泵多采用蜗壳式结构。导叶式混流泵也称斜流泵,其结构与轴流泵相似,具有径向尺寸较小,结构简单轻便等特点。大型混流泵以导叶式居多,其叶片的安装角度一般也能调节。混流泵的扬程范围一般为 3~10.5米,起动功率较低,能适应水位的变化,流量为0.1~50米3/秒;效率可达64~86%。20世纪70年代以来,大型混流泵的发展速度较快,在许多场合有取代大型轴流泵的趋势。

长轴深井泵

多数是一个立式单吸离心泵,其叶轮装在井中动水位以下,动力机设置在井上,通过传动长轴驱动叶轮在导流壳内旋转,水流沿导流壳与叶轮之间的流道,经输水管向上提升到地面。扬程高时可采用多个叶轮串联的多级离心泵。由于传动长轴的制造和安装精度要求较高,效率随井深的增加而显著降低,因而一般只用于不超过100米的深井。

潜水电泵

泵体叶轮和驱动叶轮的电机都潜入水中工作的一种水泵,有深井用和作业面用两种。深井用潜水电泵通过伸入井中的电缆向电机供电,免去了传动长轴,因而结构紧凑,重量轻,安装、使用和转移方便,在有电源地区有取代长轴深井泵的趋势,但对含沙量大的水井和无电源地区不适用。潜水电泵用的电动机有干式(电机全部密封)、半干式(电机的定子密封,而转子在水中运转)、充油式(电机内部充油以防水分侵入绕组)和湿式(电机内部充水,定子和转子都在水中运转)等类型。前3种都需要密封且制造安装精度要求较高,因而农用深井潜水电泵通常采用湿式电动机,其定子绕组采用耐水绝缘导线或在定子绕组端部及槽内浇注合成树脂,水进入电机内部影响不大,密封结构可大大简化,只要求防砂。有的深井潜水电泵扬程高达1400米,最大流量达1.4米3/秒。

射流式深井泵

通常是由射流泵和离心泵配以相应套管组成。用于从30米以内的深井中提水。射流泵的工作原理是使压力通过喷嘴喷射到喉管的入口处,由于射流的横向紊动扩散作用,带走吸水管内的空气,使管内形成真空,井水被吸入并与射流水在喉管内混合,进行能量交换。在喉管的出口处二者的流速趋近一致,再通过扩散管将大部分动能转换为压力能,使水压进一步提高,最后从排水管排出。

射流式深井泵有两种组合类型:①将射流泵同离心泵并联,离心泵通过管路将压力水送入射流泵,射流泵将这部分水与被吸水一同向上提升,从而使小流量的高压水转换成大流量的低压水,主要用于地面灌溉和渠道清淤等;②将射流泵和离心泵串并联,使射流泵给离心泵加压,提高其吸程,而将离心泵的出水量分出一部分提供给射流泵,其余部分送入压水池或压力管路,其出水压力较高,主要用于喷灌设备和农牧业供水。同潜水电泵和长轴深井泵相比,射流式深井泵具有结构简单、工作可靠、制造方便、成本低等特点;但效率较低,相同工况下的电耗较高。

螺杆泵

依靠螺杆转动时泵腔容积的变化吸入和输送水体的一种容积泵。有单螺杆、双螺杆和多螺杆等类型。在农业中使用的是单螺杆泵,其泵腔由钢制螺杆和固定安装在泵壳内的橡胶套管组成。具有单螺距的螺杆在具有双螺距内螺旋的套管内转动,两者间形成的空腔由吸入端移动到出口端,从而形成连续的水流。由于其结构简单、体积小、拆装容易、工作可靠,自吸性能好,多用于移动式喷灌系统。

手动隔膜泵

用于低扬程、小流量的提水作业,由泵体、 进出水管、进出水阀门、 隔膜和推拉杆等组成。泵体可由一个或两个泵腔组成。具有两个泵腔的隔膜泵,其隔膜设置在泵体的中央,或两个隔膜分别装在分隔的两个泵腔外侧。工作时由两人用手操纵与隔膜相连的推拉杆,推动隔膜作压进和张开的往复运动,使两个泵腔的容积交替扩大和缩小。当泵腔扩大时,压力减小,进水阀开启出水阀关闭,水从进水管流入泵腔;当泵腔缩小时,压力加大,进水阀关闭,出水阀开启,泵腔内的水从排水管流出,两个泵腔交替吸水和排水,每小时可提水10~20吨。

拉杆式活塞泵

由畜力原动机、风力机或内燃机等驱动,常在放牧场上从井中提水时使用。由泵缸、活塞、进出水管、进出水阀门、拉杆和传动装置等组成。活塞靠连接在它上面的拉杆带动,在泵缸内作上下往复运动。当活塞向上运动时,进水阀开启,进水管中的水进入泵缸,同时出水阀关闭,活塞上面的水被带动向上提升;当活塞向下运动时,进水阀关闭,出水阀开启,泵缸内的水由出水阀升到活塞上面,如此反复进水和提升,使水不断从排水管排出。

性能参数

衡量水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等对叶片式水泵来说,还有转速和比转数。 ①吸程。即水泵的吸水高度。指由泵体中心至水源水平面的垂直距离,利用泵体内真空度抽吸水流时,容许吸程一般不大于7.5米。 ②扬程。即水泵的提水高度。指单位重量的水通过水泵后,能量增加的数值。一般将抽水站进、出水池水面的高度差称为实际扬程; 加上抽水站管路及其附件(如底阀、弯头、闸阀等)的水头损失称为总扬程。水泵铭牌上所标的扬程,是指水泵在一定转速条件下效率最高时的扬程,是实际扬程和损失扬程之和。 ③流量。指水泵在单位时间内输水的数量,也称输水量。常用的流量单位有升/秒、米3/秒、米3/小时、千克/秒、吨/小时等几种。 ④轴功率。指动力机械输送给水泵轴的功率,即水泵的输入功率。 ⑤水功率。又称有效功率。指单位时间内水泵用于输水的实际功率,即水泵的输出功率。 ⑥效率。水功率与轴功率的比值即为水泵效率,通常以百分数表示。它是用来衡量动力机械传送给水泵的能量利用情况的指标,反映出水泵效能的优劣。 ⑦比转数。表示水泵特性的综合性参数。通常用nS来表示。nS=3.65nQ1/2H-3/4。式中n为转速(转/分),Q为流量(米3/秒),对双吸式水泵应以Q/2代入式内H为扬程(米)。水泵的比转数与水泵的各项参数密切相关。一般离心泵的比转数较小,因其叶轮直径大,出口宽度窄,扬程高而流量小;而轴流泵的比转数较大,因而扬程低而流量大;混流泵则介于两者之间。常用离心泵的比转数为30~300,混流泵为300~600,轴流泵为500~1800。两台几何相似的叶片泵,其比转数必然相等。因而可以利用几何相似模型的试验数据来预测大型泵的性能参数。

水泵的配套功率

水泵与动力的合理配套对保证水泵的正常运行,以获得高效率和低能耗具有重要的意义。配套动力机的功率根据水泵的扬程H(米)和流量Q(米3/秒)按下式计算:(千瓦)。扬程H 由几何扬程Hj和管路损失HS两项组成,在初步选型时可按HS=(0.1~0.2)Hj估算。 管路确定后根据管道和接头的类型或尺寸按流体力学方法计算或查表求得。式中K 为功率储备系数,常用K=1.05~1.3,功率大时取小值η1为传动效率,当动力机与水泵直接联结时η1=1;η2为水泵效率,根据泵型和工况确定。

进出水管与水池

水泵配套的进出水管道直径D根据下式选用 = 1.13Q1/2V-1/2(米),式中V 为管内流速,一般进水管V ≤2米/秒,出水管V ≤3米/秒。如采用直径变化的渐变管时,其渐变部分的长度应大于平均直径的5~7 倍。离心泵和轴流泵的进水管口设在进水池水面以下距离h1处,h1=(1.4~1.6)D1,D1为进水管直径。轴流泵的叶轮中心线设在进水池水面以下距离h3处,h2≥(0.75~D)D0,D0为叶轮直径。进水管口离池底的高度h0=(0.5~1)D0。单台水泵的进水池宽度为(2~3)D1。安装多台水泵的进水池中,相邻进水管的间距为(3~3.5)D1。进水管至进水池后壁的距离为(1~1.5)D1。为避免浪费扬程,通常将出水管装在出水池水面以下。中小型水泵出水管下缘至池底的距离约为10~20厘米;出水管上缘至水面的垂直距离为(1~2)V娤/2g,v2为出水流速(米/秒);出水池长度为(6~12)D2。D2为出水管直径出水管与池壁的距离为0.2~0.5米。

发展趋势

对发展农用水泵的要求是提高效率、降低能耗和充分利用自然能源。用一台大泵代替多台小泵可提高机组效率、节约材料、降低能耗和工程造价,且便于实现自动化管理。因此,各种大型轴流泵和混流泵发展较快,最大叶轮直径分别达到4.6米和6.2米,配套功率最高达1.25万千瓦,混流泵有取代部分高扬程轴流泵和低扬程离心泵的趋势。在深井提水方面主要发展潜水电泵,其最大口径已达1米,有的采用6000伏高压电机,最大功率达2500千瓦。水轮泵、风力拉杆泵、螺杆泵、各种人畜力驱动的隔膜泵、活塞泵和专用于同喷灌设备配套的水泵等,在中国和其他一些国家也受到不同程度的重视。 转载请注明出自水泵技术论坛——水泵人网上技术交流专业平台。

纯真的百合
留胡子的太阳
2025-08-15 11:55:50
水泵,一种用以增加液体或气体的压力,使之输送流动的机械,与“蹦”或“流”同音,为英语pump的音译,是一种用来移动液体、气体或特殊流体介质的装置,即是对流体作功的机械。人类及动物的心脏可说是天然的泵,它把血液输送到身体各个部分。

类型分类

按行业分类

石油泵、冶金泵、化工泵、渔业泵、矿业泵、电力泵、水利泵、水处理泵、食品泵、酿造泵、制药泵、饮料泵、炼油泵、调料泵、造纸泵、纺织泵、印染泵、制陶泵、油漆泵、农药泵、化肥泵、制糖泵、酒精泵、环保泵、制盐泵、啤酒泵、淀粉泵、供水泵、供暖泵、农用泵、园林泵、水族泵、锅炉泵、医用泵、船舶泵、航空泵、汽车泵、消防泵、水泥泵、空调泵、核电泵、机械泵、燃气泵

按原理分类

往复泵、柱塞泵、活塞泵、隔膜泵、转子泵、螺杆泵、液环泵、齿轮泵、滑片泵、罗茨泵、滚柱泵、凸轮泵、蠕动泵、扰性泵、叶片泵、离心泵、轴流泵、混流泵、漩涡泵、射流泵、喷射泵、水锤泵、真空泵、旋壳泵、软管泵

按用途分类

输送泵、循环泵、消防泵、试压泵、排污泵、计量泵、卫生泵、加药泵、糊化泵、输液泵、消泡泵、流程泵、输油泵、给水泵、排水泵、疏水泵、挖泥泵、喷灌泵、增压泵、高压泵、保温泵、高温泵、低温泵、冷凝泵、热网泵、冷却泵、暖通泵、深井泵、止痛泵、化疗泵、抽气泵、血液泵、抽料泵、除硫泵、剪切泵、研磨泵、燃油泵、吸鱼泵、浴缸泵、源热泵、过滤泵、增氧泵、洗发泵、注射泵、充气泵、燃气泵、美工泵、加臭泵、切碎泵

按介质分类

清水泵、污水泵、海水泵、热水泵、热油泵、稠油泵、机油泵、重油泵、渣油泵、沥青泵、杂质泵、渣浆泵、沙浆泵、灰浆泵、灰渣泵、泥浆泵、水泥泵、混凝土泵、粉末泵、酸碱泵、空气泵、蒸汽泵、氧气泵、氨气泵、煤气泵、血液泵、泡沫泵、乳液泵、涂料泵、硫酸泵、盐酸泵、胶体泵、酒精泵、啤酒泵、葡萄酒泵、巧克力泵、奶泵、淀粉泵、麦汁泵、牙膏泵、盐卤泵、卤水泵、碱液泵、熔盐泵、油脂泵、农药泵、化肥泵、药剂泵、气液泵、油剂泵、化纤泵、纺丝泵、剂量泵、油漆泵、果浆泵、纸浆泵、胰岛素泵、浓浆泵、气泵、水泵、油泵

按结构分类

单级泵、多级泵、单吸泵、双吸泵、端吸泵、自吸泵、轴封泵、屏蔽泵、微型泵、长轴泵、中开泵、高速泵

按组装分类

前置泵、立式泵、卧式泵、管道泵、潜水泵、液下泵、插桶泵

按启动分类

电动泵、气动泵、磁力泵、电磁泵、手动泵、汽动泵

按材料分类

铸铁泵、铸铝泵、不锈钢泵、塑料泵、玻璃泵、陶瓷泵、石墨泵、铸钢泵、铸铜泵、钛合金泵、铝合金泵、衬氟泵

按性能分类

防爆泵、耐磨泵、耐腐蚀泵、无泄漏泵、卫生泵、自动泵、变频泵

现将标准技术要求介绍如下:

1 压力——温度度级

多功能水泵控制阀的压力——温度等级由壳体、内件及控制管系统材料的压力——温度等级确定。多功能水泵控制阀在某一温度下的最大允许工作压力取壳体、内件及控制管系统材料在该温度下最大允许工作压力值中的小值。

1.1 铁制壳体的压力——温度等级应符合GB/T17241.7的规定。

1.2 钢制壳体的压力——温度等级应符合GB/T9124的规定。

1.3 对于GB/T17241.7、GB/T9124未规定压力——温度等级的材料,可按有关标准或设计的规定。

2 阀体

2.1 阀体法兰

法兰应与阀体整体铸成。铁制法兰的型式和尺寸应符合GB/T17241.6的规定,技术条件应符合GB/T17241.7的规定;钢制法兰的型式和尺寸应符合GB/T9113.1的规定,技术条件应符合GB/T9124的规定。

2.2 阀体结构长度见表1。

2.3 阀体的最小壁厚

铸铁件阀体的最小壁厚应符合GB/T13932-1992中表3的规定,铸钢件阀体的最小壁厚应符合JB/T8937-1999中表1的规定。

3 阀盖 膜片座

3.1 阀盖与膜片座、膜片座与阀体的连接型式应采用法兰式。

3.2 膜片座与阀体的连接螺栓数量不得少于4个。

3.3 阀盖与膜片座的最小壁厚按2.3的要求。

3.4 阀盖与膜片座的法兰应为圆形。法兰密封面的型式可采用平面式、突面式或凹凸式。

4 阀杆、缓闭阀板、主阀板

4.1 缓闭阀板与阀杆应连接紧固、可靠。

4.2 缓闭阀板与主阀板的密封型式应采用金属密封的型式。

4.3 主阀板与阀杆必须滑动灵活、可靠。4.4 主阀板与主阀板座的密封可采用金属密封和非金属密封两种型式。

5 膜片

5.1 膜片性能应符合表2(见下页)的规定。

5.2 膜片的外观质量应符合HG/T3090的规定。

5.3 当应用于生活饮用水时,膜片材料的安全性应符合GB/T17219的规定。

6 控制管系统

控制管系统的各元件应能承受阀门的最高工作压力,各部位不得发生泄漏。

7 材料

7.1 主要零部件材料的选用宜按JB/T5300的规定。

7.2 铜合金铸件应符合GB/T12225的规定;灰铸铁铸件应符合GB/T12226的规定,其抗拉强度应不小于200MPa;球墨铸铁铸件应符合GB/T12227的规定;碳素钢铸件应符合GB/T12229的规定;奥氏体钢铸件应符合GB/T12230的规定。

7.3 钢制多功能水泵控制阀铸件外观质量应符合JB/T7927的规定,铁制多功能水泵控制阀铸件外观质量参照JB/T7927的规定。

8 壳体强度

多功能水泵控制阀的壳体强度应符合GB/T13927的规定。

9 密封性能

多功能水泵控制阀的密封性能应符合GB/T13927的规定。

10 清洁度

多功能水泵控制阀的清洁度应符合JB/T7748的规定。

11 涂装

当应用于生活饮用水时,多功能水泵控制阀内腔涂装材料的安全性应符合GB/T17219的规定。外表面涂装不作规定,特殊要求在订货合同中注明。

折叠编辑本段渗漏原因和解决方法

机械密封渗漏的比例占全部维修泵的50 %以上, 机械密封的运行好坏直接影响到水泵的正常运行, 现总结分析如下。

1.周期性渗漏

(1) 泵转子轴向窜动量大, 辅助密封与轴的过盈量大, 动环不能在轴上灵活移动。在泵翻转, 动、静环磨损后, 得不到补偿位移。

对策: 在装配机械密封时, 轴的轴向窜动量应小于0.1mm , 辅助密封与轴的过盈量应适中, 在保证径向密封的同时, 动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来) 。

(2) 密封面润滑油量不足引起干摩擦或拉毛密封端面。

对策: 油室腔内润滑油面高度应加到高于动、静环密封面。

(3) 转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡, 汽蚀或轴承损坏(磨损) ,这种情况会缩短密封寿命和产生渗漏。

对策: 可根据维修标准来纠正上述问题。

2. 小型潜污泵机封渗漏引起的磨轴现象

(1) 715kW以下小泵机封失效常常产生磨轴, 磨轴位置主要有以下几个: 动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。

(2) 磨轴的主要原因:

①BIA 型双端面机械密封,反压状态是不良的工作状态, 介质中的颗粒、杂质很容易进入密封面, 使密封失效。

②磨轴的主要件为橡胶波纹管, 且是由于上端密封面处于不良润滑状态, 动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。

③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀, 橡胶件已无弹性。有的已腐烂, 失去了应有的功能, 产生了磨轴的现象。

(3) 为解决以上问题, 现采取如下措施:

①保证下端盖、油室的清洁度, 对不清洁的润滑油禁止装配。

②机封油室腔内油面线应高于动静环密封面。

③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构, 对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。

由于压力产生的渗漏

(1) 高压和压力波造成的机械密封渗漏 由于弹簧比压力及总比压设计过大和密封腔内压力超过3MPa 时,会使密封端面比压过大, 液膜难以形成, 密封端面磨损严重, 发热量增多, 造成密封面热变形。

对策: 在装配机封时, 弹簧压缩量一定要按规定进行, 不允许有过大或过小的现象, 高压条件下的机械密封应采取措施。为使端面受力合理, 尽量减小变形, 可采用硬质合金、陶瓷等耐压强度高的材料, 并加强冷却的润滑措施, 选用可*的传动方式, 如键、销等。

(2) 真空状态运行造成的机械密封渗漏 泵在起动、停机过程中, 由于泵进口堵塞, 抽送介质中含有气体等原因, 有可能使密封腔出现负压, 密封腔内若是负压, 会引起密封端面干摩擦, 内装式机械密封会产生漏气(水) 现象, 真空密封与正压密封的不同点在于密封对象的方向性差异, 而且机械密封也有其某一方向的适应性。

对策: 采用双端面机械密封, 这样有助于改善润滑条件, 提高密封性能。

因其他问题引起的机械密封渗漏

机械密封中还存在设计、选择、安装等不够合理的地方。

(1) 弹簧压缩量一定要按规定进行, 不允许有过大或过小的现象, 误差±2mm , 压缩量过大增加端面比压, 摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动静环端面比压不足, 则不能密封。

(2) 安装动环密封圈的轴(或轴套) 端面及安装静环密封圈的密封压盖(或壳体) 的端面应倒角并修光,以免装配时碰伤动静环密封圈。

以上总结了机械密封比较常见的渗漏原因。机械密封本身是一种要求较高的精密部件,对设计、机械加工、装配质量都有很高的要求。在使用机械密封时,应分析使用机械密封的各种因素, 使机械密封适用于各种泵的技术要求和使用介质要求且有充分的润滑条件,这样才能保证密封长期可靠地运转。

由于介质引起的渗漏

(1) 大多数潜污泵机械密封拆解后, 静环和动环的辅助密封件无弹性,有的已经腐烂,造成了机封的大量渗漏甚至有磨轴的现象。由于高温、污水中的弱酸、弱碱对静环和动环辅助橡胶密封件的腐蚀作用,造成了机械渗漏过大,动、静环橡胶密封圈材料为丁腈-40 , 不耐高温, 不耐酸碱,当污水为酸性碱性时易腐蚀。

对策: 对腐蚀性介质,橡胶件应选用耐高温、耐弱酸、弱碱的氟橡胶。

(2) 固体颗粒杂质引起的机械密封渗漏,如果固体颗粒进入密封端面, 将会划伤或加快密封端面的磨损,水垢和油污在轴(套) 表面的堆积速度超过摩擦副的磨损速度,致使动环不能补偿磨耗位移,硬对硬摩擦副的运转寿命要比硬对石墨摩擦副的长,因为固体颗粒会嵌入石墨密封环的密封面内。

对策: 在固体颗粒容易进入的位置应选用碳化钨对碳化钨摩擦副的机械密封。

贤惠的白羊
温暖的金毛
2025-08-15 11:55:50

导叶的作用是在水轮机工作时控制水的流量,并且水形成一个环状的量。

轮叶的作用是水轮机工作时转换水流的压力能以及动能,形成旋转机械能。

水轮机及辅机是重要的水电设备是水力发电行业必不可少的组成部分,是充分利用清洁可再生能源实现节能减排、减少环境污染的重要设备,其技术发展与我国水电行业的发展规模相适应。

在我国电力需求的强力拉动下,我国水轮机及辅机制造行业进入快速发展期,其经济规模及技术水平都有显著提高,我国水轮机制造技术已达世界先进水平。

扩展资料:

水泵水轮机主要用于抽水蓄能电站。在电力系统负荷低于基本负荷时,它可用作水泵,利用多余发电能力,从下游水库抽水到上游水库,以位能形式蓄存能量;

在系统负荷高于基水轮机本负荷时,可用作水轮机,发出电力以调节高峰负荷。因此,纯抽水蓄能电站并不能增加电力系统的电量,但可以改善火力发电机组的运行经济性,提高电力系统的总效率。50年代以来,抽水蓄能机组在世界各国受到普遍重视并获得迅速发展。

主要工作参数:

水头 H(米):

连续水流两断面间单位能量的差值称为水头。水头是水轮机的一个重要参数,它的大小直接影响着水轮机出力的大小和水轮机型式的选择。

流量:

单位时间内流经水轮机的水量(体积)称为水轮机的流量,用Q表示。通常用立方米/秒为单位。

出力:

单位时间内流经水轮机的水流所具有的能量,称为通过水轮机的“水流的出力”,用Np^0表示。

效率:

水轮机的出力N通过水轮机水流的出力之比,称为水轮机的效率,用η表示。显然效率是表面水轮机对水流能量的有效利用程度,是一个无量纲的物理量,用百分数(%)表示。

转速

水轮机主轴在单位时间内的旋转次数,称为水轮机的转速,用n表示,通常采用“转/分”作单位。

参考资料来源:百度百科-水轮机