C3和C4植物和CAM植物在碳代谢上有什么异同点?
在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM).C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙.它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性.C4植物是从C3植物进化而来的一种高光效种类.与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力.C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高.C4植物的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环.这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制了RuBPCase的加氧活性,降低了光呼吸,从而使C4植物保持高的光合效率.正是因为C4途径具有高光合能力,自60年代以来,试图利用C4光合特性来改进C3植物的光合效率,一直是一个引人注目的研究问题.多年来,人们希望通过C3植物与C4植物杂交,将C4植物同化CO2的高效特性转移到C3植物中去,但至今尚未取得令人满意的结果,其杂种F1和F2代的光合效率均比任何一个亲本都低,基于上述情况,试图通过杂交将具有C3途径的许多作物(如水稻、小麦,大豆)改造为具有C4途径植株的可能性极微.但却可能从C3植物中筛选出有PEPCase及C4途径表达较高的变异株,并加以遗传改进,从而提高C3植物的光合效率.所以几十年来,人们设想在那些利用杂种优势不明显的品种内,如C3作物大豆、小麦中筛选高光效品种.Winter(1974)指出C3植物(如小麦、大麦)不同的绿色器官中,PEPCase,RUBPase的活性存在显著差异.这不仅表现在碳同化速率上,同时也表现在碳素同化的途径上.随着人们发现C3植物中存在C4途径,根据这一特点,寻找C4途径表达强的C3植物逐渐成为光合研究的一个侧重点.为此,大量的工作已经被开展并已取得许多令人欣喜的成果.不仅证明了在C3植物中C4途径的存在,而且发现同种植物中不同品系间C4途径的强弱有较大差异.但是有关C4途径在C3植物中的表达方式及途径的研究开展还很少,人们仅发现C3植物中C4途径的客观存在,至于C4途径在C3植物中的作用机理及在植物光合作用中所占的比例,均有争议,但无论如何,有关C3植物中C4途径存在的发现及由此进行的筛选高光效品系工作,为基因工程改造培育新品种和高产农作物提供了理论依据.
1 C3植物中C4途径的发现及研究现状
C3植物中C4途径的发现是伴随着C4途径的发现而发现的.1953年Calvin确定了植物体内C3途径的存在,1965年Kortschack等在夏威夷甘蔗试验中观察到CO2固定的初期产物是四碳酸,1966年,澳大利亚的Hatch在甘蔗研究上获得了证实,并提出了C4途径.从此植物界光合碳同化方式有了C3途径和C4途径的区分.但是随着研究的日益深入,科学家们发现C3植物和C4植物的区分并非绝对的.Duffus等(1973)报道在C3植物大麦颖片中,具有高于叶片中的PEPCase含量,而PEPCase是C4途径中关键性酶,因此提出了C3植物中可能有C4途径的存在.Nutbeam等(1976)发现,非成熟的C3作物大麦种子固定CO21 min后,84%的14C分布在苹果酸中,其余的在戊糖磷酸和蔗糖中.固定后2 min,主要标记产物是蔗糖,6分钟后,蔗糖中的14C占整个固定14CO2的94%.从而进一步证实了C3植物中C4途径的存在.在粟米草属(Mollugo nudicaulis)中同一植物内可同时存在光合作用的C3和C4途径,嫩叶属C3途径,老叶属C4途径,中部叶属于中间类型.在其它C3植物中,亦发现有C4途径的存在,如宽叶香蒲(Typha latifolia)和芫荽(Coriandrum sativum)(刘振业等,1983).Cheng等(1988),Moore等(1989)和Ku等(1991)曾报道,在黄花菊属(Flaveria)中有类似C4途径的种类,它们表现出C4植物的特征;另外Bowes等(1989)指出在水韭属(Isoeres)种类中也具有同样的现象.Reiskind等(1997)发现一种两栖植物黑藻(Hydrilla verticillata),在冬季C3代谢很旺盛,而在夏季水生条件下,尽管不具有“Kranz”结构,但仍有活跃的C4代谢.看来,高等植物CO2的两种类型代谢途径,C3和C4途径不是截然分开的,而是相互联系的,在一定条件下可以相互转化的.
Hatch等(1990)经过数年的观察,他们认为判定植物体内是否具有C4途径,必须符合以下两个条件:①酶学研究,即C4途径有关的酶PEPCase,NAD(P)-苹果酸酶,NAD(P)-苹果酸脱氢酶,丙酮酸磷酸双激酶及碳酸酐酶等,与C3植物体内相应的同功酶比较,活性较高.②14CO2示踪试验证明:CO2的最初产物为C4酸即苹果酸(Mal)和天冬氨酸(Asp),而且这些有机酸脱羧后,CO2转移到有机物如糖类、淀粉中去.
1.1 酶学研究
近几十年来,人们围绕着C3植物中C4酶的存在做了大量工作,并取得了许多成果.PEPCase是C4途径的最初固定CO2的酶,大量研究表明,PEPCase不仅存在于C4植物中,而且也广泛存在于C3植物中.Ting等(1973)认为C3植物PEPCase对底物PEP,HCO3的亲和力也比C4植物中同功酶的亲和力约高6倍.因此PEPCase在C3植物中碳代谢作用是不可忽视的,尤其当植物体内外条件发生变化时,其活性发生显著变化.如烟草感染花叶病毒时,RUBPase被抑制,其功能可部分地被PEPCase代偿;小麦和大豆在干旱条件下,PEPCase活性可被显著提高.近来,Jenkins(1989)用PEPCase专一性抑制剂3,3-2氯-2-(二羟膦甲基)-丙烯酯(DCDP)证明,C3植物中C4光合酶PEPCase对CO2的同化有一定的贡献.郝乃斌等(1991b)的研究表明,大豆不同器官中的PEPCase/RuBPCase的比值差异显著,其中叶片中的比值最低,为0.27,而种皮中的比值最高为8.66,子叶中为6.49,这说明大豆种皮和子叶中PEPCase活性要比该器官中的RuBPCase活性高出几倍.而且还证明,PEPCase不仅大量固定呼吸作用所释放的CO2,同时还可以通过C4途径固定CO2.C4途径的存在标志着细胞有可能通过“CO2泵”的方式提高光合碳循环的CO2浓度,使RuBPCase的催化方向朝着有利于形成碳水化合物的方向运转.Kelly(1977)等认为与C4植物中的PEPCase相比,C3植物体内的活性较低,但与碳同化中的一些限速酶的活性相比,C3植物中的PEPCase的活性仍然是可观的.
碳酸酐酶(CA)在C4光合中是种很关键的酶,它催化CO2到HCO3的快速转化,而HCO3是PEPCase的底物.Hatch等(1990)利用生化和分子生物学技术研究发现,CA有两种,即细胞质CA和叶绿体CA,C4植物体内的CA主要是细胞质CA,而C3植物的CA主要是叶绿体CA,这2种CA动力学性质及对CO2的亲和力和对抑制剂的敏感性相似.Popova等(1990)发现CA位于C3植物的叶绿体中,它的浓度变化因植物种类而异,一般在86%~96%的范围,在C3植物中,CA同样有效地将CO2转化为HCO-3,为PEPCase提供底物,从而为C3植物中的C4途径顺利进行打下基础.
丙酮酸磷酸双激酶(PPDK)是C4途径的专一性酶,Duffus等(1973)在大麦颖果的青色种皮中,Kisaki等(1973)在烟草的幼苗及Meyer(1982)在未熟的小麦颖果中相继发现PPDK的存在.Aoyagi等(1986)年也证实在C3植物中,存在着与C4植物同样的丙酮酸磷酸双激酶(PPDK).Hata等(1987)及Aoyagi等(1984)证明,PPDK不但位于叶绿体中,而且还存在于小麦种子的细胞质中;Imaizumi(1991)通过Northern blot分析发现,在水稻种子的细胞质中有PPDK存在.Rosche等(1994)认为PPDK是C4光合作用的关键酶,它催化固定CO2的最初受体PEP的再生.PPDK大部分位于叶肉细胞,它的活性已在C3植物的光合组织中被测定.Imaizumi等(1997b)发现水稻开花6天后,外稃中的苹果酸中14C分布比开花初期高,而外稃中的PPDK在开花6 d的含量也相应地高于开花初期,这些结果显示,PPDK的功能与外稃中的C4代谢有关.已报道C3植物中的PPDK与C4植物中的PPDK具有相同的酶学特征,如被光激活(Aoyogi等,1984),对冷胁迫的敏感(Aoyogi等,1984),催化性质(Meyer等,1982)等.Hata等(1987)发现C3植物水稻幼苗体内的PPDK与C4植物玉米的PPDK无论在蛋白分子量,抗原决定簇和蛋白质结构等方面都相同.
Edwards等(1983)认为NAD(P)-苹果酸酶是催化L-苹果酸
在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM)。C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性。C4植物是从C3植物进化而来的一种高光效种类。与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高。C4植物的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制了RuBPCase的加氧活性,降低了光呼吸,从而使C4植物保持高的光合效率。正是因为C4途径具有高光合能力,自60年代以来,试图利用C4光合特性来改进C3植物的光合效率,一直是一个引人注目的研究问题。多年来,人们希望通过C3植物与C4植物杂交,将C4植物同化CO2的高效特性转移到C3植物中去,但至今尚未取得令人满意的结果,其杂种F1和F2代的光合效率均比任何一个亲本都低,基于上述情况,试图通过杂交将具有C3途径的许多作物(如水稻、小麦,大豆)改造为具有C4途径植株的可能性极微。但却可能从C3植物中筛选出有PEPCase及C4途径表达较高的变异株,并加以遗传改进,从而提高C3植物的光合效率。所以几十年来,人们设想在那些利用杂种优势不明显的品种内,如C3作物大豆、小麦中筛选高光效品种。Winter(1974)指出C3植物(如小麦、大麦)不同的绿色器官中,PEPCase,RUBPase的活性存在显著差异。这不仅表现在碳同化速率上,同时也表现在碳素同化的途径上。随着人们发现C3植物中存在C4途径,根据这一特点,寻找C4途径表达强的C3植物逐渐成为光合研究的一个侧重点。为此,大量的工作已经被开展并已取得许多令人欣喜的成果。不仅证明了在C3植物中C4途径的存在,而且发现同种植物中不同品系间C4途径的强弱有较大差异。但是有关C4途径在C3植物中的表达方式及途径的研究开展还很少,人们仅发现C3植物中C4途径的客观存在,至于C4途径在C3植物中的作用机理及在植物光合作用中所占的比例,均有争议,但无论如何,有关C3植物中C4途径存在的发现及由此进行的筛选高光效品系工作,为基因工程改造培育新品种和高产农作物提供了理论依据。
1 C3植物中C4途径的发现及研究现状
C3植物中C4途径的发现是伴随着C4途径的发现而发现的。1953年Calvin确定了植物体内C3途径的存在,1965年Kortschack等在夏威夷甘蔗试验中观察到CO2固定的初期产物是四碳酸,1966年,澳大利亚的Hatch在甘蔗研究上获得了证实,并提出了C4途径。从此植物界光合碳同化方式有了C3途径和C4途径的区分。但是随着研究的日益深入,科学家们发现C3植物和C4植物的区分并非绝对的。Duffus等(1973)报道在C3植物大麦颖片中,具有高于叶片中的PEPCase含量,而PEPCase是C4途径中关键性酶,因此提出了C3植物中可能有C4途径的存在。Nutbeam等(1976)发现,非成熟的C3作物大麦种子固定CO21 min后,84%的14C分布在苹果酸中,其余的在戊糖磷酸和蔗糖中。固定后2 min,主要标记产物是蔗糖,6分钟后,蔗糖中的14C占整个固定14CO2的94%。从而进一步证实了C3植物中C4途径的存在。在粟米草属(Mollugo nudicaulis)中同一植物内可同时存在光合作用的C3和C4途径,嫩叶属C3途径,老叶属C4途径,中部叶属于中间类型。在其它C3植物中,亦发现有C4途径的存在,如宽叶香蒲(Typha latifolia)和芫荽(Coriandrum sativum)(刘振业等,1983)。Cheng等(1988),Moore等(1989)和Ku等(1991)曾报道,在黄花菊属(Flaveria)中有类似C4途径的种类,它们表现出C4植物的特征;另外Bowes等(1989)指出在水韭属(Isoeres)种类中也具有同样的现象。Reiskind等(1997)发现一种两栖植物黑藻(Hydrilla verticillata),在冬季C3代谢很旺盛,而在夏季水生条件下,尽管不具有“Kranz”结构,但仍有活跃的C4代谢。看来,高等植物CO2的两种类型代谢途径,C3和C4途径不是截然分开的,而是相互联系的,在一定条件下可以相互转化的。
Hatch等(1990)经过数年的观察,他们认为判定植物体内是否具有C4途径,必须符合以下两个条件:①酶学研究,即C4途径有关的酶PEPCase,NAD(P)-苹果酸酶,NAD(P)-苹果酸脱氢酶,丙酮酸磷酸双激酶及碳酸酐酶等,与C3植物体内相应的同功酶比较,活性较高。②14CO2示踪试验证明:CO2的最初产物为C4酸即苹果酸(Mal)和天冬氨酸(Asp),而且这些有机酸脱羧后,CO2转移到有机物如糖类、淀粉中去。
1.1 酶学研究
近几十年来,人们围绕着C3植物中C4酶的存在做了大量工作,并取得了许多成果。PEPCase是C4途径的最初固定CO2的酶,大量研究表明,PEPCase不仅存在于C4植物中,而且也广泛存在于C3植物中。Ting等(1973)认为C3植物PEPCase对底物PEP,HCO3的亲和力也比C4植物中同功酶的亲和力约高6倍。因此PEPCase在C3植物中碳代谢作用是不可忽视的,尤其当植物体内外条件发生变化时,其活性发生显著变化。如烟草感染花叶病毒时,RUBPase被抑制,其功能可部分地被PEPCase代偿;小麦和大豆在干旱条件下,PEPCase活性可被显著提高。近来,Jenkins(1989)用PEPCase专一性抑制剂3,3-2氯-2-(二羟膦甲基)-丙烯酯(DCDP)证明,C3植物中C4光合酶PEPCase对CO2的同化有一定的贡献。郝乃斌等(1991b)的研究表明,大豆不同器官中的PEPCase/RuBPCase的比值差异显著,其中叶片中的比值最低,为0.27,而种皮中的比值最高为8.66,子叶中为6.49,这说明大豆种皮和子叶中PEPCase活性要比该器官中的RuBPCase活性高出几倍。而且还证明,PEPCase不仅大量固定呼吸作用所释放的CO2,同时还可以通过C4途径固定CO2。C4途径的存在标志着细胞有可能通过“CO2泵”的方式提高光合碳循环的CO2浓度,使RuBPCase的催化方向朝着有利于形成碳水化合物的方向运转。Kelly(1977)等认为与C4植物中的PEPCase相比,C3植物体内的活性较低,但与碳同化中的一些限速酶的活性相比,C3植物中的PEPCase的活性仍然是可观的。
碳酸酐酶(CA)在C4光合中是种很关键的酶,它催化CO2到HCO3的快速转化,而HCO3是PEPCase的底物。Hatch等(1990)利用生化和分子生物学技术研究发现,CA有两种,即细胞质CA和叶绿体CA,C4植物体内的CA主要是细胞质CA,而C3植物的CA主要是叶绿体CA,这2种CA动力学性质及对CO2的亲和力和对抑制剂的敏感性相似。Popova等(1990)发现CA位于C3植物的叶绿体中,它的浓度变化因植物种类而异,一般在86%~96%的范围,在C3植物中,CA同样有效地将CO2转化为HCO-3,为PEPCase提供底物,从而为C3植物中的C4途径顺利进行打下基础。
丙酮酸磷酸双激酶(PPDK)是C4途径的专一性酶,Duffus等(1973)在大麦颖果的青色种皮中,Kisaki等(1973)在烟草的幼苗及Meyer(1982)在未熟的小麦颖果中相继发现PPDK的存在。Aoyagi等(1986)年也证实在C3植物中,存在着与C4植物同样的丙酮酸磷酸双激酶(PPDK)。Hata等(1987)及Aoyagi等(1984)证明,PPDK不但位于叶绿体中,而且还存在于小麦种子的细胞质中;Imaizumi(1991)通过Northern blot分析发现,在水稻种子的细胞质中有PPDK存在。Rosche等(1994)认为PPDK是C4光合作用的关键酶,它催化固定CO2的最初受体PEP的再生。PPDK大部分位于叶肉细胞,它的活性已在C3植物的光合组织中被测定。Imaizumi等(1997b)发现水稻开花6天后,外稃中的苹果酸中14C分布比开花初期高,而外稃中的PPDK在开花6 d的含量也相应地高于开花初期,这些结果显示,PPDK的功能与外稃中的C4代谢有关。已报道C3植物中的PPDK与C4植物中的PPDK具有相同的酶学特征,如被光激活(Aoyogi等,1984),对冷胁迫的敏感(Aoyogi等,1984),催化性质(Meyer等,1982)等。Hata等(1987)发现C3植物水稻幼苗体内的PPDK与C4植物玉米的PPDK无论在蛋白分子量,抗原决定簇和蛋白质结构等方面都相同。
Edwards等(1983)认为NAD(P)-苹果酸酶是催化L-苹果酸脱羧的酶,在C3,C4及CAM植物中广泛存在。Scheibe(1990)发现NADP-苹果酸脱氢酶是催化草酰乙酸转化为Mal的酶,在自然界中广泛存在,因此认为C3植物的NADP-MDH在碳代谢中与C4型植物的NADP-MDH同样重要。
在大豆的豆荚,西红柿的果皮,小麦及水稻的颖果中存在着一种C3-C4中间型或类似C4的光合途径(Edwards等,1983)。有关C4途径的光合酶,如PEPCase,PPDK,NAD(P)-ME及NAD(P)-MDH在这些器官中具有较高的活力。在大麦和小麦的穗中,在大豆的豆荚中有较高的PEPCase和RuBPCase活性,在西红柿的果皮中也具有相同的现象。Imaizumi等(1991,1997a)指出在水稻的园锥花序的外稃和内稃中,有关C4途径的酶(PEPCase,PPDK,NAD(P)-ME及NAD(P)-MDH)的活性分别是在RuBPCase活性的67%~171%之间浮动。因为植物体内的物质代谢是多重的,例如Latzko等(1983)认为C3植物体内的PEPCase的作用不仅行使C4途径,固定外界CO2,生成苹果酸,而且生成的Mal还可以用来维持细胞的pH,也还可以作为三羧酸循环(TCA)的中间产物来参与呼吸代谢。
1.2 CO2同化后的最初产物及转换
Hatch等(1961)提出,在C4途径中固定外界CO2的最初产物为苹果酸(Mal)和天冬氨酸(Asp),为此许多人用14CO2示踪技术,来证明C3植物中不仅存在高活性的C4途径光合酶,同时从CO2同化产物方面来证实C4途径的存在。
Nutbeam等(1976)证明,在C3作物大麦中不仅具有高活性的PEPCase,而且利用14CO2示踪还证明14C的最初固定产物为四碳酸—Mal,而不是3-磷酸甘油酸(3-PGA)。在小麦穗中,用同位素示踪技术也同样发现,CO2的最初产物为Mal和Asp。
Imaizumi等(1997b)发现水稻圆锥花序显示出高的CO2同化速率(在叶绿素含量的基础上),有利于产量的提高。在水稻圆锥花序中,不仅存在较高的C4途径酶活力,同时采用14C脉冲12C追踪实验,发现外稃中有大约35%和25%的14C分别固定在3-PGA和Mal中。在C4酸中大约有一半的14C转移到卡尔文循环的中间产物中去。这个结果表明,在水稻外稃中,光合途径主要表现为C3途径,然而它们可能有某种程度地利用PEPCase固定CO2。
Imaizumi等(1997b)利用LED技术研究CO2同化产物在水稻圆锥花序的外稃中的代谢,其结果也证明在水稻中存在C4途径。所谓LED技术,就是在外界空气条件下,植物组织接受光照20分钟后,将其移入一个密闭系统,然后关掉光源,注射进14CO2,使14CO2的浓度达到0.03%。在暗中固定14CO2 120 s后恢复光照,同时用含12CO2的空气代替14CO2。在不同的时间间隔,杀死叶片组织,然后测组织中的14C含量。Samejima等(1978)曾报道说,利用LED技术,在玉米叶片中,大量的14C被固定在Mal和Asp中,并且在LED技术的暗处理过程中,14C水平保持恒定。C4植物玉米叶片的特征之一是C4酸的C-4位置的14C的转移是严格光依赖的。在水稻的外稃中,暗中固定的大部分的14C积累在Mal和Asp中,并且没有转移到其它产物中去,这一点与玉米的14CO2固定结果相同。Samejima等(1978)报道,利用真空渗入法把NaH14CO3溶液直接饲喂给玉米叶片的鞘细胞,14CO2的光合起始产物为3-PGA;然而通过LED技术,14CO2的最初产物为Mal和Asp。他们认为,用真空渗入法技术得到的结果是由少量的RuBPCase造成的,而非玉米叶片的PEPCase作用结果。如果存在预光照期或通过预光照中止法,RuBPCase活力迅速减少。因此,在水稻的外稃中,尽管主要以C3途径固定CO2,但由于存在比RuBPCase活力更高的PEPCase以及其它C4途径光合酶,同时利用LED技术已经证明,在水稻的外稃中可产生大量的14C标记的C4酶,而且Mal中的14C主要转移到3-PGA和蔗糖中,因此可说明在水稻外稃中确实存在着C4途径。
下一个问题是C3植物中被固定到四碳酸的CO2是否像C4植物那样直接由PEPCase催化固定而来的;或像来自RuBPCase所催化固定的,即空气中的CO2先被C3植物中的RuBPCase固定在产物如蔗糖中,然后通过呼吸作用分解产生的CO2被PEPCase重新固定。Hatch(1976)证明,在C4植物中,95%的Mal中的14C位于C-4位置上。然而在C3植物中,Mal的14C只有60%位于C-4位置,33%位于C-1位置。Imaizumi(1997b)采用14CO2示踪和LED技术证明水稻外稃中,分别有90%和71%的14C出现在Mal中。在14CO2示踪试验中,光照10分钟后,水稻外稃中,90%的14C被标记在Mal的C-4位置;然而在水稻的旗叶中,Mal中的14C只有72%在C-4位置上。这些结果表明,水稻外稃中的14CO2是通过PEPCase被直接固定下来的。Samejima等(1978)用示踪试验证明,C4植物叶片中几乎所有的C4酸中的14C都转移到其它产物,而水稻外稃中四碳酸的14C,大约50%进入到3-PGA,然后转移到磷酸糖中,大约另一半的14C在其它的生化途径中缓慢代谢,如参与氨基酸合成或糖异生途径等。实验结果还表明水稻外稃的C4酸代谢像C4植物那样是光依赖性的。
Usuda等(1973)认为14C从Mal到3-PGA的转化,至少有2种可能途径:1)Mal脱羧,形成的14CO2被RuBPCase重新固定,产生3-PGA;2)Mal脱羧产生丙酮酸,丙酮酸经磷酸化再产生3-PGA。若Mal中的14C完完全全位于C-4位置,则第二种可能性可忽略不计。Imaizumi等(1997b)的试验结果显示,在光合作用固定14CO2 10 s和LED的110 s后,Mal中的14C分别有90%和83%位于C-4位置。这种比例还不足以排除第二种可能,但却有力地支持了第一种可能性的存在。
Nutbeam等(1976)也发现,通过14CO2饲喂发育中的大麦颖果,在颖片中有一些C4途径的特征。水稻开花后30 d,从圆锥花序中分离颖片(开花后60 d,谷粒成熟),在饲喂14CO2 1 min后,标记的产物是Mal,长时间喂饲14CO2,14C标记出现在蔗糖中,进一步研究证实Mal中的C-4位置的14C转移到3-PGA的C-1位置,证明了C4途径的存在。
综上所述,无论从酶学,还是从四碳酸代谢均可充分地证明在C3植物中确实存在着C4途径。
2 C4途径在C3植物中作用机理的探讨
2.1 C4途径的酶分子生物学的研究进展
随着C3植物中C4途径存在的证实及分子生物学手段的运用,人们更深刻地了解C4途径酶类的分子机理及它们在C3植物体内的表达。Agarie等(1997)认为,近年来研究最为成功的例子是PPDK在一种两栖类植物荸荠(Eleocharis)体内表达的研究。荸荠在陆生条件下,进行C4型光合作用,而在水生条件下,进行C3方式CO2同化。通过对陆生和水生条件下,丙酮酸磷酸双激酶(PPDK)的同源基因ppdk1和ppdk2的研究证明,尽管同源基因同源性极高,但却不完全相似。PPDK1蛋白是cDNA的核序列编码的,包含一个特殊的N端区域,可能作为叶绿体的转移肽,然而PPDK2缺乏这个特殊区域。因此ppdk1和ppdk2分别编码一个叶绿体PPDK1和一个细胞质PPDK2。基因组的Southern印迹分析显示,在荸荠的基因组中存在小的ppdk基因家族。Northern印迹分析显示无论叶绿体PPDK1或是细胞质PPDK2同时在同一光合器官—空心秆中表达。但不同的生态环境下,这些基因的表达不同。荸荠缺乏叶片,原来的空心秆表现出所有的光合功能。这种植物依赖环境条件发育成不同的光合器官(即C3类型空心秆和C4类型空心秆),当水生空心秆露出空气中,空心秆就迅速死掉,而长出新的空心秆就具有Kranz结构和C4光合特征。相反地,如果具有C4途径的陆生空心秆被淹没在水中,植物就会发育成过渡态新空心秆,几个月后,就有C3方式光合,即从C4方式逐渐向C3方式转化。在C4植物中,PPDK位于叶肉细胞的叶绿体,在那里催化丙酮酸向PEP的转化。PPDK基因的细胞专一性表达是在转录水平上调控。PPDK是核DNA编码,基因从两个不同的起始点转录。在两个不同的起动子的控制下,大的转录产物是叶绿体PPDK,包括转运肽;小的产物是细胞质PPDK。两栖类型的荸荠,其光合特征的独一无二的进化方式为阐明C4途径的基因表达机理提供了有用的系统。由于有关同一基因组的多种基因的不同表达依赖于生长环境,正如两栖类荸荠的基因表达,也为分子水平上研究C4途径的代谢提供了很好的模式。
另外,人们对PEPCase基因也作了许多研究,对C3,C4,C3-C4的PEPCase基因进行克隆,基因结构分析和调控表达进行广泛的研究。Hermans(1990)在黄花菊属(Flaveria)中发现有C3,类似C3,类似C4,C3-C4,C4等不同代谢类型,分析它们的PEPCase基因,发现同源性极高,由共同的原始祖先进化而来的,由于表达不同,所以活性高低不同,C4植物PEPCase基因与C3植物PEPCase基因有71%的同源性。Gupta等(1994)通过诱导,使C3植物冰叶日中花(M.crystallinum)中PEPCase的同源基因转录水平大大提高。Hermans等(1990)通过研究C3和C4植物中特殊酶专一性同源基因,发现同种黄花菊属种类中的PEPCase基因具有相同的序列段,研究表明这些同源基因是由共同的原始基因进化而来,只是在不同的植物中有不同的表达。前面谈到在植物中CA有C4型(细胞质CA)和C3型(叶绿体CA),它们基因的不同仅仅是表达水平的不同,细胞质基因高水平表达,而叶绿体基因低水平表达。Badger等(1994)指出两种CA的启动子区域不同导致了两种CA的不同表达。有关C4植物与C3植物PEPCase基因表达区可能为启动子作用不同而使不同种类的PEPCase表达不同,即C4植物高水平表达,而C3植物则低水平表达,说明光调节光合酶基因的表达具有复杂的机理。由于同源基因在不同环境下的表达不同,因此能否通过人为的方法修饰启动子,使C4途径的酶在C3植物中大量表达呢?如果这种设想取得成功,那么C4途径在C3植物中的表达将大大提高,C3植物光合效率也将会有较大改变,从而为作物改良提供了新的分子生物学途径。
2.2 影响C3植物中C4途径的出现和表达的因素
2.2.1 环境因子 Ueno等(1988)发现两栖类植物荸荠已经进化成在不同的生长条件下、具有不同的光合类型。在陆生条件下,表现为C4碳代谢特征;而在水生条件下,则表现为C3植物特征。Teese(1995)发现在高温下,黄花菊属的lineanis类似C4途径特征的表现增强,同时提高CO2同化效率。Reiskind(1989)发现,在低浓度的CO2条件下,能使C3植物诱导出类似C4植物特征,随着类似C4途径的出现,它们的光呼吸强度和CO2补偿点降低。Reiskind等(1997)发现黑藻(Hydrilla)虽然没有复杂的细胞内区域化,但极易通过诱导出现类似C4途径特征,从而提高CO2同化率,所以在研究C3植物诱导出现C4光合途径,黑藻被认为是一个优秀的材料。
2.2.2 植物不同发育阶段的影响 影响C4途径表达的因素是多方面的,除了环境是一个重要因素外,不同的植物发育阶段也是一个重要影响因素,这一现象已在许多植物中被发现。
在粟米草属(Mollugo nudicaulis)中同一植物内,嫩叶进行C3途径,老叶属C4途径,中部叶植物中间类型。甘蔗本来为C4型植物,但植物老化时,出现C3植物的特征。Khanna等(1973)报道过高梁在开花后其光合碳同化向C3途径的转变,此时RuBPCase活性大于PEPCase活性,而且初期产物中磷酸甘油酸(3-PGA)较多,但叶片仍保持有Kranz构造。这些说明不同的发育阶段确实影响C4途径的表达。
2.3 几种C3植物中C4途径的作用机理
尽管人们已经发现环境因子的诱导对C4途径表达很重要。但是C3植物既不具备C4植物的Kranz结构,也没有C4途径酶的区域分隔,即叶肉细胞和鞘细胞之分。那么,C3植物中的C4途径又如何运行的呢?对此许多研究工作者作过探索,并提出几种设想。
2.3.1 碳酸酐酶作用机理 在C4植物中CA定位在叶肉细胞的细胞质中,在鞘细胞中只有极微的CA活力。在C3植物中CA定位于叶绿体中,在不同植物中,叶绿体CA含量占整个细胞CA含量的比例为86%~95%。Popova等(1990)发现在低CO2条件下,CA参与C3植物对低CO2浓度的适应。CA和叶肉细胞中的PEPCase联合起来,反应过程如下:CO2→HCO3→OAA,CA位于叶绿体中,OAA通过NADP-苹果酸脱氢酶被还原成Mal,并且Mal能被脱羧;另一种反应也可能是OAA直接被脱羧,并生成底物PEP。在这两种情况下脱羧生成的CO2将加强CO2被固定,伴随着CA的参与,CO2与H2O反应,会生成HCO3,通过这种方式,CO2进入细胞质,并且运转到叶绿体的RuBPCase作用的部位。在C3植物中,这种反应将作为一种CO2同化适应机理运行。
2.3.2 叶绿体是CO2的浓缩部位 Bowes等(1989)发现通过提高细胞质PEPCase活力能减少光呼吸CO2的无效循环,他们认为CO2的浓缩位点有可能是叶绿体。Badger等(1992)发现蓝细菌和显微藻类细胞中,羧酶体和叶绿体分别是CO2的浓缩部位,这些支持了Bowes等的假设。黑藻(Hydrilla verticillota (L.f.) Royle)是一种可诱导成为C4类型的C3植物。Reiskind等(1997)发现在黑藻诱导型C4光合状态时,虽仍不具有C4叶片的“Kranz”结构,但从光合指标看,却是按C4机制运行。联想到前人假设叶绿体为CO2浓缩部位,他们利用计算和测定发现,在C4型黑藻的叶绿体内可溶性无机碳(DIC)浓度是周围介质DIC浓度的5倍,CO2浓度达到400 mmol*m-3,这些数值与陆生C4植物叶片鞘细胞内〔CO2〕相符合,而在C3光合状态时,叶绿体内CO2只有7 mmol*m-3。氧抑制RuBPCase羧化程度研究发现在相同O2浓度诱导C4型黑藻中,RuBPCase活性只有2%的被抑制,而C3型的O2抑制RuBPCase活性则高达27%左右。利用PEPCase专一性抑制剂碘乙酰胺发现在C4型黑藻的细胞质中所利用的碳源是来自OAA和Mal,这类C4酸穿过叶绿体膜在叶绿体内脱羧,给卡尔文循环供应碳源。酶学研究发现,NADP苹果酸酶位于叶绿体中,进一步证实叶绿体是CO2浓缩的部位。他们还发现,当诱导型C4光合状态出现时,催化OAA转化成Mal的NADPH苹果酸脱氢酶活性增高,并且这种酶也定位在叶绿体中。在C4光合过程中,丙酮酸磷酸双激酶(PPDK)为PEPCase提供底物PEP。Salvuci等(1981)发现在诱导C4型黑藻中,随着C4光合型的出现,PPDK活力增加了10倍。以上这些证明在不具有Kranz结构而又行使C4光合途径的植物中,叶绿体充任CO2浓缩的部位,在细胞质中,通过PEPCase作用,产生OAA,OAA穿越叶绿体膜,在叶绿体内生成Mal,Mal脱羧,然后CO2进入卡尔文循环和丙酮酸再生成PEP。由于这方面工作开展较少,许多具体作用途径还需进一步研究。
2.3.3 大豆C4循环途径 郝乃斌等(1991a)通过研究发现大豆叶片中存在着较高活性的丙酮酸磷酸双激酶,而且大豆不同器官中PEPCase羧化酶等C4光合酶活性存在很大差异。从而他们认为在大豆叶片中,具有一个完整的C4循环(PEP羧化酶→C4酸脱羧→PEP再生),这个系统的存在标志着绿色细胞有可通过“CO2泵”的方式提高光合碳循环的CO2浓度,使RuBPCase的催化朝着有利于形成碳水化合物的方向运行,他们还认为,C3植物中活跃的CO2-β羧化作用至少有两方面的功能,一是像C4植物那样通过C4途径固定大气中的CO2,尽管这种作用比较弱,另外一种是PEPCase重新固定呼吸作用释放的CO2,减少CO2的流失,增强碳素的积累。
3 C3植物的遗传改造
C4植物之所以有高的光合效率是因为它具有C4途径,因此,在C3植物中C4途径的存在并运行,也应该是高光效的标志。现已证明在C3植物中具有C4途径已母庸置疑,但如何提高C3植物中C4途径同化CO2的强度,则是今后的重要研究课题。目前国内外已开展了一些工作,并取得了一定的成效。
3.1 高光效育种研究
作物高光效育种既要考虑株型结构的高光效,更应考虑生理功能的高光效。从遗传学看,光合器的结构以及决定其活力的调节系统极其复杂,受多基因控制。因此,仅借助于自然来打破基因链锁是困难的。杂交育种和人工诱变则是基因重组的有效方法,这是因为细胞核突变使叶绿体的结构和生化机构发生变化,便于人工选择筛选其有益的种质。郝乃斌等(1984)及戈巧英等(1994),通过有性杂交和物理诱变等方法,已培育出高光效大豆品种(系)哈79-9440和诱处四号等,这些品种的特性除RuBPCase活性提高外,更重要的是C4途径中关键性酶活性的提高,如PEP羧化酶活性提高29.8%、NAD-苹果酸酶活性提高50.2%、NADP-苹果酸酶活性提高78.5%、丙酮酸磷酸双激酶活性提高251.2%。NADP-苹果酸脱氢酶活性提高62.7%等。由于这些酶活性的提高,标志着C4途径运转速率的提高,从而使绿色细胞有可能通过“CO2泵”的方式提高光合碳循环的CO2浓度来提高光合效率。因此,通过遗传育种手段,可能选育出具有高活性C4途径的C3植物。
回答者:wwwwer777 - 秀才 二级 10-5 16:20
在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM)。C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性。C4植物是从C3植物进化而来的一种高光效种类。与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高。C4植物的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。这种CO2的浓缩机理
是气孔
气孔是由两个保卫细胞围绕而成的缝隙。保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形。与其它表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶。保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用。保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开。反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭。这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用。
▲调查的一般方法
步骤:明确调查目的、确定调查对象、制定合理的调查方案、调查记录、对调查结果进行整理、撰写调查报告
▲生物的分类
按照形态结构分:动物、植物、其他生物
按照生活环境分:陆生生物、水生生物
按照用途分:作物、家禽、家畜、宠物
▲生物圈是所有生物的家
▲生物圈的范围:大气圈的底部:可飞翔的鸟类、昆虫、细菌等
水圈的大部:距海平面150米内的水层
岩石圈的表面:是一切陆生生物的“立足点”
▲生物圈为生物的生存提供了基本条件:营养物质、阳光、空气和水,适宜的温度和一定的生存空间
▲环境对生物的影响
非生物因素对生物的影响:光、水分、温度等
▲光对鼠妇生活影响的实验P15
▲探究的过程:1、提出问题 2、作出假设 3、制定计划 4、实施计划 5、得出结论 6、表达和交流
▲对照实验 P15
▲生物因素对生物的影响:
最常见的是捕食关系,还有竞争关系、合作关系
▲生物对环境的适应和影响
生物对环境的适应P19的例子
生物对环境的影响:植物的蒸腾作用调节空气湿度、植物的枯叶枯枝腐烂后可调节土壤肥力、动物粪便改良土壤、蚯蚓松土
▲生态系统的概念:在一定地域内,生物与环境所形成的统一整体叫生态系统。一片森林,一块农田,一片草原,一个湖泊,等都可以看作一个生态系统。
▲生态系统的组成:
生物部分:生产者、消费者、分解者
非生物部分:阳光、水、空气、温度
▲如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。
▲植物是生态系统中的生产者,动物是生态系统中的消费者,细菌和真菌是生态系统中的分解者。
▲食物链和食物网:
食物链以生产者为起点,终点为消费者,且是不被其他动物捕食的“最高级”动物。
▲物质和能量沿着食物链和食物网流动的。
营养级越高,生物数量越少;营养级越高,有毒物质沿食物链积累(富集)。
▲生态系统具有一定的自动调节能力。
在一般情况下,生态系统中生物的数量和所占比例是相对稳定的。但这种自动调节能力有一定限度,超过则会遭到破坏。
例如:在草原上人工种草,为了防止鸟吃草籽,用网把试验区罩上,结果发现,网罩内的草的叶子几乎被虫吃光,而未加网罩的地方,草反而生长良好。原因是:食物链被破坏而造成生态系统平衡失调。
▲生物圈是最大的生态系统。人类活动对环境的影响有许多是全球性的。
▲生态系统的类型p29
森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等
▲生物圈是一个统一的整体p30
▲ 注意DDT的例子 (富集)课本26页。
▲ 课本27页1题33页生物圈2号
▲ 生物的生存依赖于环境,以各种方式适应环境,影响环境。
第二单元 生物和细胞
▲ 显微镜的结构
镜座:稳定镜身;
镜柱:支持镜柱以上的部分;
镜臂:握镜的部位;
载物台:放置玻片标本的地方。中央有通光孔,两旁各有一个压片夹,用于固定所观察的物体。
遮光器:上面有大小不等的圆孔,叫光圈。每个光圈都可以对准通光孔。用来调节光线的强弱。
反光镜:可以转动,使光线经过通光孔反射上来。其两面是不同的:光强时使用平面镜,光弱时使用凹面镜。
镜筒:上端装目镜,下端有转换器,在转换器上装有物镜,后方有准焦螺旋。
准焦螺旋:粗准焦螺旋:转动时镜筒升降的幅度大;细准焦螺旋。
转动方向和升降方向的关系:顺时针转动准焦螺旋,镜筒下降;反之则上升
▲显微镜的使用 P37-38 的图要掌握
▲观察的物像与实际图像相反。注意玻片的移动方向和视野中物象的移动方向相反。
▲放大倍数=物镜倍数X目镜倍数
▲ 放在显微镜下观察的生物标本,应该薄而透明,光线能透过,才能观察清楚。因此必须加工制成玻片标本。
▲观察植物细胞:实验过程P43-44
▲切片、涂片、装片的区别 P42
▲植物细胞的基本结构
细胞壁:支持、保护
细胞膜:控制物质的进出,
细胞质:液态的,可以流动的。细胞质里有液泡,液泡内的液泡内溶解着多种物质(如糖分)
细胞核:贮存和传递遗传信息
叶绿体:进行光合作用的场所,
液泡:细胞液
▲观察口腔上皮细胞实验P47
▲动物细胞的结构
细胞膜:控制物质的进出
细胞核:贮存和传递遗传信息
细胞质:液态,可以流动
▲ 植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核
▲ 植物细胞与动物细胞的不同点:植物细胞有细胞壁和液泡,动物细胞没有。
▲细胞的生活需要物质和能量
▲ 细胞是构成生物体的结构和功能基本单位。
▲ 细胞是物质、能量、和信息的统一体。细胞通过分裂产生新细胞。
▲细胞中的物质
有机物(一般含碳,可烧):糖类、脂类、蛋白质、核酸,这些都是大分子
无机物(一般不含碳):水、无机物、氧等,这些都是小分子
▲细胞膜控制物质的进出,对物质有选择性,有用物质进入,废物排出。注意课本52页图叫什么
▲细胞内的能量转换器:
叶绿体:进行光合作用,是细胞内的把二氧化碳和水合成有机物,并产生氧。线粒体:进行呼吸作用,是细胞内的“动力工厂”“发动机”。
二者联系:都是细胞中的能量转换器
二者区别:叶绿体将光能转变成化学能储存在有机物中;
线粒体分解有机物,将有机物中储存的化学能释放出来供细胞利用。
▲动植物细胞都有线粒体。
▲细胞核是遗传信息库,遗传信息存在于细胞核中
▲ 多莉羊的例子p55,
▲ 57页1题
▲细胞核中的遗传信息的载体——DNA
DNA的结构像一个螺旋形的梯子
▲基因是DNA上的一个具有特定遗传信息的片断
▲DNA和蛋白质组成染色体
不同的生物个体,染色体的形态、数量完全不同
同种生物个体,染色体在形态、数量保持一定
▲染色体容易被碱性染料染成深色
染色体数量要保持恒定,否则会有严重的遗传病
▲细胞的控制中心是细胞核
▲细胞通过分裂产生新细胞
▲生物的由小长大是由于:细胞的分裂和细胞的生长
▲细胞的分裂
1、染色体进行复制
2、细胞核分成等同的两个细胞核
3、细胞质分成两份
4、植物细胞:在原细胞中间形成新的细胞膜和细胞壁
动物细胞:细胞膜逐渐内陷,便形成两个新细胞
▲新生命的开端---受精卵
▲经细胞分化形成的各种各样的细胞各自聚集在一起才能行使其功能,这些形态结构相似、功能相同的细胞聚集起来所形成的细胞群叫做组织。
▲不同的组织按一定的次序结合在一起构成器官。
▲动物和人的基本组织可以分为四种:上皮组织、结缔组织、肌肉组织、神经组织。
四种组织按照一定的次序构成,并且以其中的一种组织为主,形成器官。
▲ 能够共同完成一种或几种生理功能的多个器官按照一定的次序组成在一起构成系统。
▲八大系统:运动系统、消化系统、呼吸系统、循环系统、泌尿系统,神经系统、内分泌系统、生殖系统。
▲动物和人的基本结构层次(小到大):细胞→组织→器官→系统→动物体和人体
▲植物结构层次(小到大):细胞→组织→器官→植物体
一、探索生命的奥秘 1生物体的共性:○1、生物体有一定的结构。 ○2、生物体能够由小长大。 ○3、生物体在生长过程中,必须要新陈代谢。 ○4、生物体通过产生自己的后代使物种得以延续,且具有遗传和变异的现象○5、生物体对外界的刺激能够做出一定的反应。 ○6、生物体都能适应一定的环境,也能影响环境。 2-除了病毒外,生物都是由细胞构成的。 3-细胞是生物体生命活动的基本单位。 4-环境中直接影响生物生活的各种因素叫做生态因素 5-生态因素可以分为:○1、非生物因素:阳光、水分、温度、空气、土壤等。 ○2、生物因素: 指影响某种生物生活的其他生物。 6-生物和环境之间相互影响,相互作用。 7-我们把研究生命现象和生命活动规律的科学叫做生物学。 8-由于制作临时玻片标本的生物材料,必须薄而透明,有时还需要染色,这样才能观察清楚。 9-科学探究通常包括提出问题、作出假设、实验(制定计划、实施计划)、得出结论(分析现象、处理数据、得出结论)和表达、交流等方面。 10-在设计对照实验时,我们应注意:除试验变量外,其他条件均相同。 二、生命体的结构层次 1-植物细胞的基本结构包括细胞壁、细胞膜、细胞质、细胞核等。 2-植物细胞的形态多种多样,结构基本相同。 3-洋葱鳞片叶的内表皮细胞不含叶绿体。 4-人和动物的细胞在形态和大小上也有差异。 5-人和动物细胞的结构与植物细胞的结构基本相似,也具有细胞膜、细胞质、细胞核。 6-人和动物的细胞都没有细胞壁,其细胞质中也没有叶绿体和中央大液泡。 7-再每种生物的体细胞内,染色体的形态、结构、数目都是一定的。 8-染色体的主要成分是脱氧核糖核酸(DNA)和蛋白质。 9-细胞核在生物的遗传中具有重要的作用。 10-生物体的生长现象与生物体细胞的数目增多,体积增大有关。 11-植物体的主要组织有保护组织、输导组织、基本组织、分生组织。 12-人体的基本组织有上皮组织、肌肉组织、结缔组织、神经组织。 13-绿色开花植物体的结构层次是:细胞→组织→器官→个体 14-细胞→组织→器官→系统→个体 15-单细胞生物也能趋利避害、适应环境 三、生物圈中的绿色植物。 1- 胚是新植株的幼体,有子叶、胚芽、胚轴、胚根组成。 2- 具有完整的、有生命力的胚,是种子名法的必要条件。 3- 种子萌发需要的外界条件是足够的水、充足的空气和适宜的温度。 4- 胚的结构与将来的发育情况:○1胚芽——茎 ○2叶 子叶——消失 ○3胚轴——连接根和茎的部分 ○4胚根——根 5- 根尖的最前端是根冠(细胞体积较大),然后是分生区(细胞体积较小)、伸长区(细胞体积较大)、成熟区(细胞体积较大,表皮细胞向外突起,形成根毛。) 6- 根尖的分生区细胞,有很强的分裂能力。 7- 植物的根还具有向地生、向肥生和向水生等特性。 8- 吸收水和无机盐的主要部分是成熟区。 9- 外界溶液浓度是直接影响根细胞吸水和失水的主要原因之一。 10- 不同的无机盐与他们的作用:○1含氮的无机盐——枝繁叶茂 ○2含磷的无机盐——硕果累累 ○3含钾的无机盐——茎秆健壮 11- 枝芽(枝或茎)由幼叶(叶)、芽轴(逐渐伸长)和芽原基(新芽)等部分构成。 12- 木本植物的茎从外到内一般由树皮、形成层、木质部和髓四个部分构成。 13- 木质部中的导管,具有疏导水和无机盐的功能。 14- 韧皮部中的筛管,具有疏导有机养料的功能。 15- 木本植物形成层的细胞,向内分裂形成新的木质部,向外分裂形成新的韧皮部。 16- 一朵花一般由雄蕊、雌蕊、花瓣、花萼等组成。 17- 花的基本结构 雄蕊 花药(花粉) 花丝 雌蕊 柱头 花柱 子房 子房壁———→ 果皮 胚珠 珠被→种皮 果实 卵细胞→受精卵→胚 种子 18- 花生米是由胚珠发育而来。 19- 玉米粒属于果实 20- 杏仁属于种子 21- 绿色植物通过叶绿体,利用光能,把二氧化碳和水转变成贮存能量的有机物,并释放出氧气的过程,叫做光合作用 22- 绿色植物像一个巨大的能量转换站,把光能转变为化学能贮存在植物体的有机物中。 23- 光(动力) 光合作用的公式:水+二氧化碳 ——→ 有机物+氧气 叶绿体(场所) 24- 麦秆和稻杆之所以能燃烧,是因为其中含有有机物。 25- 植物体的所有活细胞都能进行呼吸作用(分解有机物、产生二氧化碳和水,并释放能量)。 26- 呼吸作用的公式: 氧气+有机物 —→ 二氧化碳+水+释放能量 27- 绿色植物进行呼吸作用分解有机物、释放能量是植物进行生命活动的直接能源。 28- 低温、少氧等环境因素有利于延长农产品贮存的时间。 29- 生物圈中的物质循环是指物质的循环利用。 30- 生物圈的大气中,氧气体积分数约为21% 二氧化碳体积分数约为0.03%。 31- 绿色植物根部吸收的水,主要以水蒸气的形式通过叶的气孔散失到空气中,这就是蒸腾作用。 32- 绿色植物的蒸腾作用散失了大量的水,促进了水循环。 绿色植物是空气的“过滤器”、有害气体的“解毒器”、 噪声的“消声器”、空气温度的“调节器”
七年级生物下册复习提纲
二、人体的营养
1、食物中的营养物质
1)蛋白质:构成人体细胞的基本物质,为人体的生理活动提供能量;
糖类:人体最重要的供能物质,也是构成细胞的成分;
脂肪:供能物质,单位质量释放能量最多;但一般情况下,脂肪作为备用的能源物质,贮存在体内;
维生素:不参与构成人体细胞,也不提供能量,含量少,对人体生命活动起调节作用,
维生素A:促进人体正常的发育,增强抵抗能力,维持人的正常视觉。
缺乏时,皮肤粗糙,夜盲症
维生素B1:维持人体正常的新陈代谢和神经系统的正常生理功能。
缺乏时,神经炎,脚气病
维生素C:维持正常的新陈代谢,维持骨骼、肌肉和血管的正常生理作用,增强抵抗力。
缺乏时,坏血病,抵抗力下降
维生素D:促进钙、磷吸收和骨骼发育。
缺乏时,佝偻病(如鸡胸、X形或O形腿等)、骨质疏松症
水:约占体重的60%~70%,细胞的主要组成成分,人体的各种生理活动都离不开水。
无机盐:构成人体组织的重要材料,如:
钙:儿童缺乏导致佝偻病,鸡胸,O型腿,中老年人会骨质疏松、
磷:缺乏导致厌食
铁:构成血红蛋白,缺乏导致贫血
缺碘:甲状腺肿大或者儿童智力发育障碍
2、消化和吸收
1)消化系统的组成
消化道:口腔 咽 食道 胃 小肠 大肠 肛门
消化系统消化食物和吸收营养物质等
消化腺:唾液腺、胃腺、肝脏、胰腺、肠腺
分泌消化液,肝脏是人体最大的消化腺,分泌胆汁,参与脂肪消化
2)小肠的结构特点:
消化食物和吸收营养物质的主要场所。
肠壁构造(由内向外):黏膜、黏膜下层、肌肉层、浆膜
小肠适于消化、吸收的特点:
a)最长;
b)内表面具有皱襞和小肠绒毛(大大增加了消化和吸收的面积);
c)小肠绒毛内有毛细血管、毛细淋巴管,绒毛壁和毛细血管、毛细淋巴管的管壁都很薄,只由一层上皮细胞构成,这种结构有利于吸收营养物质;
d)有各种消化液。
3)食物的消化:在消化道内将食物分解成为可以吸收的成分的过程。
物理性消化:牙齿的咀嚼、舌的搅拌和胃、肠的蠕动,将食物磨碎、搅拌,并与消化液混合。
化学性消化:通过各种消化酶的作用,使食物中各种成分分解为可以吸收的营养物质。
唾液淀粉酶 酶(肠液、胰液)
淀粉的消化(口腔、小肠):淀粉 麦芽糖 葡萄糖
酶(胃液、胰液、肠液)
蛋白质的消化(胃、小肠):蛋白质 氨基酸
胆汁(肝脏)酶(肠液、胰液)
脂肪的消化(小肠):脂肪脂肪微粒 甘油+脂肪酸
胆汁不含消化酶
4)营养物质的吸收:营养物质通过消化道壁进入循环系统的过程。
胃:少量的水、酒精(非营养)
小肠(主要的吸收场所):葡萄糖、氨基酸、甘油、脂肪酸、大部分水、无机盐和维生素
大部分脂肪成分从小肠绒毛的毛细淋巴管( 淋巴管血液循环)吸收; 其他从小肠绒毛的毛细血管进入血液循环。
大肠:少量水、无机盐和一部分维生素
3、关注合理营养和食品安全
1)合理营养按时进餐
不偏食、不挑食、不暴饮暴食
均衡摄入五类食物(平衡膳食宝塔)
2)食品安全 蔬菜瓜果必须清洗干净
不吃有毒的食物(馊饭菜、发芽的马铃薯)
买经检疫合格的食品
保持厨房和炊具的干净
三、人体的呼吸
1、呼吸道对空气的处理
1)、呼吸道的组成:
呼吸道:鼻腔咽喉气管支气管
呼吸系统 气体进出肺的通道,清洁、湿润、温暖吸入的气体
肺:气体交换的场所
2)、肺
(1)位置:胸腔内,左右各一
(2)结构:肺泡外面包绕着毛细血管,肺泡和毛细血管的壁都很薄,只由一层上皮细胞构成,适于气体交换。
(3)功能:气体交换
2、发生在肺内的气体交换
1)呼吸运动包括吸气和呼气两个动作。
2)人在平静呼吸时,肋间外肌、膈肌、肋骨、胸骨、胸廓和肺的变化:
3)原理:呼吸肌收缩和舒张 胸廓扩大和缩小 肺被动地扩大和回缩 形成压力差 吸气和呼气
4) 体内气体的交换:
二氧化碳
(2)肺泡内的气体交换:血液肺泡
氧气
氧气
(3)组织里的气体交换:血液组织细胞
二氧化碳
3、空气的质量与健康
1)空气的质量影响人体健康大气中的污染物危害人体健康极大
有害物质能引起呼吸系统的疾病
2)了解当地的空气质量当地空气污染的原因
测算空气中的尘埃粒子
四、人体内物质的运输
1、流动的组织-——血液
1)血液的组成和功能
血浆 成分:水、蛋白质、葡萄糖、无机盐等
功能:运载血细胞,运输养料和废物
红细胞
血细胞 白细胞
血小板
种类 形态特点 正常值 功能 病症
红细胞 两面凹的圆饼状,成熟的红细胞中无细胞核 男子平均值:5.0*1012个/升;女子:4.2*1012个/升 运输氧和一部分二氧化碳 贫血
白细胞 比红细胞大,有细胞核 4~10*109个/升 吞噬病菌,对人体有防御功能和保护作用 发炎
血小板 个体较小,形态不规则,无细胞核 100~300*109个/升 止血和加速凝血
血红蛋白:红细胞中含有的一种红色含铁的蛋白质。
特性:在含氧高的地方与氧结合,在含氧低的地方与氧分离
血液的功能:运输、防御保护、调节体温
2、血流的管道—血管
1)血管的种类、结构与功能
种类 功能 分布 结构特点
动脉 把血液从心脏输送到身体各部分去的血管 较深 管壁厚,弹性大,管腔小,血流速度快
静脉 把血液从身体各部分送回心脏的血管 较深或较浅 管壁薄,弹性小,管腔大,四肢静脉内有静脉瓣,血流速度慢
毛细血管 连通最小动脉和最小静脉之间的血管 分布广,遍布全身各器官组织 管壁极薄,由一层上皮细胞构成,只允许红细胞单行通过,血流速度最慢
3、输送血液的泵-心脏
1)心脏的结构和功能:位于胸腔中部,偏左下方 由心肌构成
有四个腔:左心室 连接主动脉,壁最厚
右心房 连接上、下腔静脉
右心室 连接肺动脉
左心房 连接肺静脉
瓣膜:房室瓣(位于心房和心室之间,只朝向心室开)保证血液按
一定的方向流动
动脉瓣(位于心室与动脉之间,只朝向动脉开)
心脏的功能:血液循环的动力器官
**:心房、心室与瓣膜的活动关系:
2) 血液循环
(1)血液循环的概念和途径:
概念:血液在心脏和全部血管所组成的管道中进行的循环流动。
分为体循环和肺循环:
体循环:左心室 主动脉各级动脉 身体各处 各级静脉 上、下腔静脉右心房
毛细血管
------------------------------------------------------------------------------------------------
肺循环:左心房 肺静脉 肺部的毛细血管 肺动脉 右心室
(2)出血的初步护理:
毛细血管出血:血液呈红色,自然止血,应消毒;
动脉出血:血色鲜红,血流猛急,在受伤动脉近心端进行止血;
静脉出血:血色暗红,血流缓和,在受伤静脉远心端进行止血。
4输血与血量
1) 血型的发现:1900年,兰德斯坦纳发现了ABO血型
2)血量:占体重的7~8%
3)输血:血型:A型、B型、AB型、O型
输血:以输同型血为原则
所有血型都可以少量输入O型血,AB型可以接受所有血型的少量输血
五、 人体内废物的排出
1、尿的形成与排出
1)排泄的概念:体内物质分解时产生的二氧化碳、尿素和多余的水分等废物排出体外的过程。
途径:1)皮肤:以汗液的形式排出水、无机盐、尿素
2)呼吸系统:以气体的形式排出二氧化碳、水
3)泌尿系统:以尿液的形式排出水、无机盐、尿素
2)泌尿系统的组成
肾脏:形成尿的场所
输尿管
膀胱 排尿的通道,膀胱有贮尿的作用
尿道
3)肾单位的结构与功能
肾小球:由入球小动脉分出的数十条毛细血管弯曲盘绕而成,另一端汇集成出球小动脉
肾单位 肾小囊:肾小管的盲端膨大部分凹陷而成,囊壁分内、外两层,内层紧贴肾小球,外层与肾小管相连
肾小管:肾小囊内外两层之间的囊腔与肾小管相通
4)尿的形成
(1)肾小球的滤过作用:
除了血细胞和大分子的蛋白质以外的血浆成分都可以滤过,形成原尿
(2)肾小管的重吸收作用:对人体有用的物质,包括大部分水、全部葡萄糖和部分无机盐
(3)肾小管的分泌作用:肾小管上皮细胞分泌氨等物质,形成尿液
**区别:血液、血浆、原尿和尿液
2、人粪尿的处理
1)人粪尿的价值:作为农家肥。特点是:肥源广、养分全、肥效持久、能改良土壤。
建沼气池
人粪尿的 方法: 高温堆肥
2) 无害化建生态厕所
处理
作用:杀死各种病菌、虫卵,分解有机物和其他有害物质。
六 、人类生命活动的调节
1、 人体堆外界环境的感知
1)人的视觉和听觉
(1)眼球的结构与功能
外膜 角膜:外膜的前部,无色透明,可透光
巩膜:白色,保护眼球内部的作用
虹膜:中膜的前部,有颜色,中央是瞳孔,通光
眼球壁 中膜 睫状体:虹膜稍后部,内有平滑肌,能收缩舒张,调节晶状体的曲度
脉络膜:占中膜2/3的后部,有血管(营养眼球)、色素细胞(遮光并使眼球内部形成“暗室”)
内膜:视网膜,内有大量感光细胞
房水
内容物 晶状体:双凸镜,依靠韧带与睫状体相连
玻璃体
附属结构:眼肌、眼睑、睫毛、结膜、泪器(泪腺、泪点、鼻泪管)
(2)视觉的形成:
经折光沿着视神经传导
外界光线 在视网膜上成像 产生神经冲动 视觉中枢(形成视觉)
(3)眼的卫生保健:
近视:由于眼球前后径过长,或晶状体曲度过大,物像落在视网膜的前方
矫正:戴凹透镜
远视:由于眼球前后径过短,或晶状体曲度过小,物像落在视网膜的后方
矫正:戴凸透镜
沙眼:由沙眼衣原体感染眼睑内面的结膜
2) 耳的结构和功能:
外耳 耳郭收集、传导声波
外耳道
鼓膜:接受声波,产生振动
(1)中耳 鼓室:有咽鼓管与咽部相通,保持鼓膜内外大气压的平衡
听小骨:三块,将鼓膜的振动传导至内耳
半规管
内耳 前庭
耳蜗:内有听觉感受器,能接受刺激产生神经冲动
(2)听觉的形成
沿着听小 沿着与听觉
沿外耳道 骨传导 有关的神经
声波 鼓膜 产生振动 耳蜗 产生神经冲动 听觉中枢
(形成听觉)
2、神经系统的组成
1)神经系统的组成 中枢神经系统:脑、脊髓
周围神经系统:脑神经、脊神经
2)神经元的结构、功能:
(1)突起 轴突:一条,长而分支少
树突:数条,短而呈树状分枝
集结成束,外包上结缔组织膜
轴突包上髓鞘叫神经纤维(末端的细小分支为神经末梢) 神经
(2)功能:感受刺激,产生兴奋,传导兴奋(兴奋是以神经冲动的形式传导的)
**区别 中枢神经系统:包括脑和脊髓
神经中枢:在中枢神经系统的灰质里,功能相同的神经元细胞体汇集在一起,调节人的某一项相应的生理活动,叫神经中枢。
3、神经调节的基本方式
1) 反射的概念:动物(包括人)通过神经系统,对外界或内部的各种刺激所产生的有规律的反应 **区别于:应激性
2) 射弧的概念:参与反射的神经结构
组成:感受器、传入神经、神经中枢、传出神经、效应器(书P81)
膝跳反射的过程:扣击部位:膝盖下位的韧带
现象:小腿突然跳起
感受器:股四头肌及肌腱内的感觉神经末梢
神经中枢:位于脊髓灰质中
效应器:(下肢的)股四头肌及其内的运动神经末梢
3)反射的类型简单的反射
复杂的反射
1、了解所需设备种类与功能
关于洗护产品,仅大家熟知的洗衣机便有无数品牌。在选购设备之前,一定要先了解与洗护相关的各类洗涤设备的种类与各类设备的功能,如洗衣机、干洗机、烘干机等。只有先了解设备的种类与功能,才能在选择时保持清晰的思维,明确自己所需要的产品,而避免茫然无知。
2、了解各个品牌的市场占有率、口碑
在了解了各种洗护设备种类与功能之后,接下来,就是选择设备的具体品牌。如品牌一般,各设备的品牌数量难以估计,但不要因此便盲目选择,越是繁多越要谨慎。最简单的品牌选择方式,便是抽取某一类设备,比较各品牌旗下该设备的市场占有率与口碑,从而选出最优品牌。
3、了解设备的质量与售后服务
若是经过市场的调查对某一品牌的某一设备有了好感,可千万别冲动购买,售后服务是购买前必须咨询的环节,没有售后保障的产品其质量也相应不佳,三天两头出事加售后不给力,绝对是开店的噩梦。
选择加盟东方瑞俪,会为加盟者提供优质的洗衣设备,同时会根据加盟者的财务情况以及开店大小帮加盟者选择合适的机械设备,之后还会手把手教加盟者如何使用这些机械,让加盟者开店无忧,安心经营。
气孔是植物叶表皮组织上的小孔,为气体出入的门户.气孔在叶的上下表皮都有,但一般在下表皮分布较多.花序、果实、尚未木质化的茎、叶柄和卷须上也有气孔存在.气孔的大小随植物种类和器官而异,一般长约20~40 μm,宽约5~10 μm.每平方厘米叶面上约有气孔2 000~4 000个.
气孔是由两个保卫细胞围绕而成的缝隙.保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形.与其它表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶.保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用.保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开.反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭.这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用.
气孔总面积只占叶面积的1%~2%,但当全部气孔开放时,其失水量可高达与叶面积同样大小的自由水面蒸发量的80%~90%.为什么气孔散失水分有这样高的效率呢?当水分从较大的面积上蒸发时,其蒸发速率与蒸发面积成正比;但从很小的面积上蒸发时,其蒸发速率与其周长成正比.表4-3说明,孔径愈小,单位面积的蒸发量愈大;水蒸汽穿过小孔扩散量与小孔的周长成正比,而不与小孔的面积成正比.这是因为气体分子穿过小孔时,边缘的分子比中央的分子扩散速度较大.由于气孔很小,符合小孔扩散原理,所以气孔蒸腾散失的水量比同面积的自由水面蒸发的水量大得多.
(二)气孔运动的机理
如上所述,气孔运动是保卫细胞内膨压改变的结果.这是通过改变保卫细胞的水势而造成的.人们早知道气孔的开关与昼夜交替有关.在温度合适和水分充足的条件下,把植物从黑暗移到光照下,保卫细胞的水势下降而吸水膨胀,气孔就张开.日间蒸腾过多,供水不足或在黑夜时,保卫细胞因水势上升而失水缩小,使气孔关闭.
是什么原因引起保卫细胞水势的下降与上升呢?目前存在以下学说.
1.淀粉-糖转化学说(starch-sugar conversion theory)
光合作用是气孔开放所必需的.黄化叶的保卫细胞没有叶绿素,不能进行光合作用,在光的影响下,气孔运动不发生.
很早以前已观察到,pH影响磷酸化酶反应(在pH6.1~7.3时,促进淀粉水解;在pH2.9~6.1时,促进淀粉合成):
淀粉-糖转化学说认为,植物在光下,保卫细胞的叶绿体进行光合作用,导致CO2浓度的下降,引起pH升高(约由5变为7),淀粉磷酸化酶促使淀粉转化为葡萄糖-1-P,细胞里葡萄糖浓度高,水势下降,副卫细胞(或周围表皮细胞)的水分通过渗透作用进入保卫细胞,气孔便开放.黑暗时,光合作用停止,由于呼吸积累CO2和H2CO3,使pH降低,淀粉磷酸化酶促使糖转化为淀粉,保卫细胞里葡萄糖浓度低,于是水势升高,水分从保卫细胞排出,气孔关闭.试验证明,叶片浮在pH值高的溶液中,可引起气孔张开;反之,则引起气孔关闭.
但是,事实上保卫细胞中淀粉与糖的转化是相当缓慢的,因而难以解释气孔的快速开闭.试验表明,早上气孔刚开放时,淀粉明显消失而葡萄糖并没有相应增多;傍晚,气孔关闭后,淀粉确实重新增多,但葡萄糖含量也相当高.另外,有的植物(如葱)保卫细胞中没有淀粉.因此,用淀粉-糖转化学说解释气孔的开关在某些方面未能令人信服.
2.无机离子吸收学说(inorganic ion uptake theory)
该学说认为,保卫细胞的渗透势是由钾离子浓度调节的.光合作用产生的ATP,供给保卫细胞钾氢离子交换泵做功,使钾离子进入保卫细胞,于是保卫细胞水势下降,气孔就张开.1967年日本的M.Fujino观察到,在照光时漂浮于KCl溶液表面的鸭跖草保卫细胞钾离子浓度显著增加,气孔也就开放;转入黑暗或在光下改用Na+、Li+时,气孔就关闭.撕一片鸭跖草表皮浮于KCl溶液中,加入ATP就能使气孔在光下加速开放,说明钾离子泵被ATP开动.用电子探针微量分析仪测量证明,钾离子在开放或关闭的气孔中流动,可以充分说明,气孔的开关与钾离子浓度有关.
3.苹果酸生成学说(malate production theory)
人们认为,苹果酸代谢影响着气孔的开闭.在光下,保卫细胞进行光合作用,由淀粉转化的葡萄糖通过糖酵解作用,转化为磷酸烯醇式丙酮酸(PEP),同时保卫细胞的CO2浓度减少,pH上升,剩下的CO2大部分转变成碳酸氢盐(HCO3-),在PEP羧化酶作用下,HCO3-与PEP结合,形成草酰乙酸,再还原为苹果酸.苹果酸会产生H+,ATP使H+-K+交换泵开动,质子进入副卫细胞或表皮细胞,而K+进入保卫细胞,于是保卫细胞水势下降,气孔就张开.
此外,气孔的开闭与脱落酸(ABA)有关.当将极低浓度的ABA施于叶片时,气孔就关闭.后来发现,当叶片缺水时,叶组织中ABA浓度升高,随后气孔关闭.
(三)影响气孔运动的因素
1.光
光是影响气孔运动的主要因素.在一般情况下,气孔在光照下开放,在黑暗中关闭.只有景天科植物例外,其气孔在晚上开放,而在白天关闭.这些植物在晚上吸收二氧化碳,并以有机酸的形式贮藏起来,而在白天进行光合作用将其还原.促进气孔开放所需的光量,因植物种类而异,烟草仅需全日光的2.5%就行了,其它植物则要求较高,几乎需要全日光才行.光影响气孔开放,是由于光合作用引起的,有关的机理如前所述.
2.温度
一般说来,提高温度能增加气孔的开放度.30~50 ℃时,气孔可达最大开度.低温(10 ℃)下,虽进行长时间光照,气孔仍很难完全张开.高温下气孔增加开度是植物抗热的保护机制,它可以通过加强蒸腾作用,降低植物体温.
3.叶片含水量
叶片过高或过低的含水量,会使气孔关闭.如叶子被水饱和时,表皮细胞含水量高而膨胀,挤压保卫细胞,气孔在白天也关闭.在白天蒸腾强烈时,保卫细胞失水过多,即使在光照下气孔还是关闭.
4.二氧化碳
二氧化碳浓度对气孔的开闭有显著影响,低浓度时促进气孔开放,高浓度时不管在光照或黑暗条件下都能促进气孔关闭.
5.风
微风时对气孔的开闭没有什么影响,大风促使气孔关闭减少开度.
6.化学物质
醋酸苯汞、阿特拉津(2-氯-4-乙氨基-6-异丙氨基均三氮苯)、乙酰水杨酸等能抑制气孔开放,降低蒸腾.脱落酸的低浓度溶液洒在叶表面,可抑制气孔开放达数天,并且作用快,在2~10分钟内可使多种植物气孔开始关闭.细胞分裂素可促进气孔开放.
《升级版人教版初中生物八年级下册.zip》百度网盘免费资源下载
链接: https://pan.baidu.com/s/1dVElqFaQswHAx7FbHS9dDQ
?pwd=dajg 提取码: dajg植物的光合碳循环常伴随着光呼吸。有些植物中,在CO2由光合碳循环同化前,先通过四碳途径或景天科酸代谢途径固定在四碳双羧酸中。这些都是和碳同化密切关联着的反应。
光呼吸 植物在空气中进行光合作用时,碳同化的中间产物中有一部分被氧化成CO2,其过程和一般有机物氧化成CO2的呼吸作用不同。它是由于O2和CO2竞争,与二磷酸核酮糖反应生成磷酸乙醇酸而引起的。磷酸乙醇酸通过乙醇酸途径氧化而放出CO2。一般植物中,光呼吸所放出的CO2量常可达当时光合作用同化CO2量的 1/3左右。降低空气中氧气浓度,光呼吸就会减少。
四碳途径和景天科酸代谢 有些起源于热带的植物如玉米、甘蔗等进行光合作用时,CO2先在叶肉细胞内与磷酸烯醇式丙酮酸反应,被固定在四碳双羧酸中,后者转运到维管束鞘细胞中再释放出CO2供光合碳循环同化。四碳双羧酸的形成和运输起CO2泵的作用,在鞘细胞中造成一个高于空气中CO2浓度的微环境,以利于光合碳循环的进行。这些植物的光合速率较高,光呼吸较低。此外,一些肉质植物(如景天、仙人掌、菠萝等)中存在景天科酸代谢,其反应与四碳途径相仿,但它是在夜间将CO2固定在四碳双羧酸中,白天释放出来供光合碳循环同化,起一个CO2库的作用。因此使这些植物在白天因缺水而气孔关闭的情况下也能进行光合作用。有四碳途径的植物常被称为四碳植物,无四碳途径或景天科酸代谢的植物常被称为三碳植物。
光合作用的效率及其影响因素
在优良条件下测定光合作用效率的结果和对光合作用机理的分析表明,植物在光合作用中每同化一个CO2分子或碳水化合物需要8~10个光量子。按此量子需要量推算,植物利用太阳总辐射的效率可达10%左右。实际上,大田中作物的光能利用率远低于此数。一般作物生物生长良好的田块,一季中光能利用率只有1~2%,其原因和作物的生理特性、环境条件和群体的结构有关。
光合作用和植物生理状态的关系 光合作用的机构和植物其他机构一样,有它的发生、成长和衰老过程。在发育初期光合速率较低;成长后较高,且稳定一段时期;到衰老时下降。植物的生理状态和外界条件对光合速率各阶段的持续时间和光合速率高低有显著影响。光合机构的光合产物大部分输出到植株其他部分,供各种生命活动之需。当植株其他部分对光合产物需要量增加时,光合速率常会提高。反之,当光合产物利用缓慢,输出受阻时,光合速率会逐渐下降。此外,植株的其他部分还能通过激素传递等方式影响光合机构的发育和运转。
光合作用和环境条件的关系许多环境条件的变动可影响光合机构的运转,植物的光合机构对它的环境也有一定的适应能力。
光 是进行光合作用所需的能源。光照较弱时,光反应速率常是光合作用速率的限制因素。光合速率和光强变化成正比关系。光强较高时,光合作用受其他反应(统称暗反应)速率的限制,所以其速率不能随光强成正比地提高,并逐渐达到饱和。光强太高时,光合机构还会受到破坏。
不同类型的植物在不同光照强度下生长时,其光合速率达到饱和的光强有显著的差别。一般阳生植物(包括绝大部分农作物)的饱和光强接近晴天中午日光(约1kW/m2)的一半。生长良好的时候,其光合速率一般为10~20μmolm-2s-1(1μmolm-2s-1=1.58mgCO2dm-2h-1)。玉米、甘蔗等四碳植物的光合作用在中午日光下也未达到饱和,其速率可达25~35μmolm-2s-1。阴生植物如酢浆草等的光合作用在光强不到中午日光的1/10时便会饱和,光合速率小于6μmolm-2s-1。但其光补偿点(光合速率与呼吸速率相等时的光强)也很低。太阳辐射中植物光合作用所利用的波长范围为380~720纳米,有的细菌的光合作用的利用范围可延伸到1000纳米。不同光质的光对光合机构的发育及光合产物的种类有不同的影响。
温度光合作用的暗反应受温度影响。低温下光合速率较低,温度上升10℃,光合速率可提高一倍左右,至最适温度以上再增加温度则光合速率下降。C3植物的光合作用最适温度一般为20~30℃,C4植物一般为35~40℃。温度过高或过低都会破坏光合机构。植物光合机构对所处温度条件有一定适应能力,不同种类植物的适应范围有显著差别。
水 作为光合作用的原料,每形成1克有机物约需0.6克水,这和陆生植物光合作用时所消耗水的数量相比是微不足道的,大量水分是蒸腾掉的。光合机构通过叶片等表皮上张开的气孔从空气中吸收CO2时,会大量蒸腾散失水分。一般C3植物蒸腾掉的水分重量和光合作用积累的有机物的重量的比值称蒸腾系数,常在300左右,C4植物因为有CO2泵,可低至200以下,景天科酸代谢的植物可小于100。植物缺水时,气孔关闭,光合作用受阻;进一步缺水则光合机构损坏。
气空气中的CO2是光合作用的原料,它的浓度较低,一般为340vpm[1vpm=1/1000 000(体积比)],且在它到达同化部位的通路上,要经历周围大气→叶片表皮→叶肉细胞表面→叶绿体内这3大阶段的阻力(C3植物中,它们的比例大致为1∶2~6∶8)。所以CO2的供应常是植物在自然条件下光合速率的限制因素(C4植物因有CO2泵,在CO2浓度为0.03%时已接近饱和)。气流通过叶面的速度在一定范围内(一般小于2m/s)和光合速率成正相关。空气中CO2含量增至0.1%左右时,可显著提高光合速率。温室中CO2不易散失,可以增施CO2以提高产量。
空气中所含浓度为21%的氧气是引起光呼吸的重要因素。空气中常含有SO2、O3等污染物质,虽含量甚微,但超过限度就会引起气孔关闭,甚至损害光合机构。
肥植物从土壤中吸收的无机元素在植株组成中所占的比重虽然比光合作用形成的有机物小,但其中许多种为光合所必需。例如,参与光合机构组成或运行的元素有N,P,K,S,Mg,Fe,Mn,Cu,Zn,Cl等。其中N,P,Mg等还起着多重作用。当这些无机营养元素缺乏或过多时,光合机构的形成和运行就会受到影响。缺绿是多数元素缺乏时常出现的病征。
群体光能利用
在农田、森林、草地及各种自然植被中,常常不是单个的植物进行光合作用,而是由许多植株组成群体利用光能。群体内部形成了特殊的微环境,其中的光能分布、气体流通等都与外界显著不同。决定单位地面上太阳光的捕获量的,也不是单个叶片的大小,而是叶片总面积的多少。群体叶面积的多少以单位面积土地上叶面积的单位数来表示,称为叶面积指数(或系数)。它无论以亩(亩/亩)或平方米(m2/m2)计算时,都是无量纲数。当叶面积指数小于1时,对太阳光能的捕获和利用不充分。叶面积捐数大于1时,虽然有一部分叶片被其他叶片遮蔽,所受光强低于自然光,但由于叶片交错排列,下层叶井不处于完全黑暗之中,仍能进行一定程度的光合作用。叶层过多,下部叶片受光极弱,可能低于补偿点,它们不能对群体干物质累积有所贡献。对每种特定条件,群体叶面积指数有一个最适值,多数情况下在3~5之间。
天空光特别是太阳直射光照射到叶片上时的入射角大小,影响受光的强弱。入射角小(光线与叶片接近垂直)则光强高。由于光饱和现象,光强高则光能利用率低。中午前后太阳光入射角较小,如叶面积指数足够大时,直立叶群体光能利用率高于水平叶,早晚则相反。禾本科的稻、麦等叶片常接近直立,而双子叶植物中的向日葵、棉花叶片接近水平。
植物的叶片等光合器官本身,也是用光合产物形成的。光合产物用于形成叶片的比例大,叶片薄,都有利于捕获光能和CO2。但叶片以外的其他部分,对叶片等光合器官起支持或支援作用,如根吸收水和无机养料,茎支撑叶片并输送养料等,也不宜过分削弱,因而叶片所占比例也有最适范围。
在农业生产上,常用高密度、高肥(特别是氮肥)或灌水来促进叶面积的形成和发展;用间作套种来提高地面覆盖率。温带早春气温低,是限制叶面积形成及光合作用进行的因素。除覆盖栽培(或称设施农业)以外,只能用选择能耐受低温的植物种(如冬小麦)或品种来适应。前后作茬口搭配得当,栽培条件适于维持旺盛的光合作用,可取得较多的总光合产物量(生物量)。
农作物除叶菜类和饲料作物外,收获物主要的常是非光合器官,如果实、种子、块根、块茎等。因而农业生产上既要求形成足够大的叶面积指数,并维持较长的有效期,也要求及时并大量地形成经济价值较大的构成产量的器官。所以生产上运筹栽培措施和茬口搭配时,需要将光合器官的数量和工作效率与光合产物在各器官间的分配结合起来考虑,求得最大的经济效益
初中生物合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234 提取码:1234简介:初中生物优质资料下载,适合各阶段老师教学,学生日常辅导,中考冲刺,技能提升的学习。
第1周第1 课时
教学目标:
1举例说出种子的结构。
2说出种子的各结构在种子萌发中的作用。
3描述种子萌发的过程。
4认同“人与自然和谐发展”观点。通过参与种植、管理植物的活动,增强爱护植物的情感
重点:种子的各结构在种子萌发中的作用难点:描述种子萌发的过程
教学过程
预习检测:各种植物的种子,尽管形状、大小、颜色不一样,但是却有大致相同的结构,都有和,胚是新植物的幼体,是种子的主要部分,它由、、、构成。
知识点拨:
种皮:保护
菜豆种子的结构 胚芽:发育成茎和叶
双子叶植物的种子 胚胚轴:连接根和茎的部分
胚根:发育成根
子叶:提供营养 2片
果皮和种皮
胚芽
玉米粒的结构 胚 胚轴
单子叶植物的种子胚根
子叶 1片
胚乳:贮存养料
测一测
1、播种时要选取粒大饱满的种子,由于种子的 或 是储存营养的结构,只有发育完全、 的种子能发育成健壮的幼苗。
2.已被虫蛀过的种子,一般不能萌发,其主要原因是()
A.种皮破损,无保护作用B.胚被虫蛀破损,无生活力
C.外界条件不适宜 D.种子因感染病毒而失去生活力
4.粮仓中存放了十年的小麦种子虽给予适宜条件,一般也不能萌发,其原因是( )
A. 种子仍处于休眠期B.种子已过寿命期而死亡
C.种子的种皮太厚 D.种子因受抑制而不能萌发
5.保存种子的适宜条件是( )
A. 低温干燥 B.高温干燥
C.高温潮湿 D.低温潮湿
6.在菜豆种子的萌发过程中,首先突破种皮的结构是 ()
A.胚根 B.胚芽 C.胚轴 D.子叶
7.在菜豆种子的结构中,能发育成幼苗的茎和叶的是()
A.胚根 B.胚芽 C.胚轴 D.子叶
8.在菜豆种子和玉米种子的萌发过程中供给胚根、胚轴和胚芽营养物质的结构分别是()
A.子叶和胚乳B.胚乳和子叶
C.子叶和子叶 D.胚乳和胚乳
9.种子的休眠有利于 ()
A.营养物质的积累 B.吸收各种营养
C.渡过恶劣的环境 D.营养物质的制造
能力提高
10、解剖种子的结构,发现子叶是连接在 结构上的。
11、一位农民撒种后,只盖了很薄的一层土,他播种的可能是什么种子()
A大豆 B玉米 C小麦 D白菜
12、食用的豆腐主要是那种植物的种子的哪部分加工成的( )
A小麦的子叶 B小麦的胚乳 C大豆的子叶 D大豆的胚乳
13、我们食用的面粉主要是小麦种子的那部分加工成的()A胚 B子叶 C种皮 D胚乳
14、播种前有些种子为什么用药剂浸种?答:防止 或打破 促早萌发
15、小麦种子萌发时,具有甜味的物质是胚乳中的转变成的 。
课题:第三单元第一章第二节种子萌发的条件
第 2 周第1课时
教学目标:
1简述种子萌发的外界和内部条件
2会测种子发芽率。
3会应用变量单一,设计对比实验。
重点:种子萌发的内、外界条件。
难点:探究各种外界条件影响种子萌发的途径的过程
教学过程
复习检测:
1. 种子的胚具有的结构是、、 、 。
2.在菜豆种子的结构中,能发育成幼苗的茎和叶的是()
A.胚根 B.胚芽 C.胚轴 D.子叶
3.种子萌发应具备的内在条件是( )
A.适宜的温度 B.一定的水分 C.充足的空气D.完整的活的胚
预习检测:
1、种子萌发应具备的外界条件是 、 、 。
知识点拨:
一、种子萌发的内在条件:完整的活胚,通过休眠期
二、种子萌发的外界条
三、实际用:1、满足种子萌发的条件,方式:松土、浇水、覆膜等
2、测定种子萌发率:发芽率=萌发种子数/全部被测种子数×100%
发芽率在 以上才可播种
测一测
(1)要确定某一因素是不是种子萌发所必须的外界条件,可以通过 实验来证明。
(2)种子萌发必须有适当的外界条件,即 、 和 。三者同等重要,缺一不可。此外,有些种子的萌发还受着光的影响。
(3)大多数农作物在春天播种,是为了满足这一萌发条件,在播种之前要松土,是为了使种子得到 ,如果长期不下雨,还要 。
2.子叶或胚乳里贮存的营养物质,能分解为小分子物质的必需条件是()
A.种子含水分多 B.空气干燥 C.温度适宜 D.阳光充足
3.种子萌发时需要空气,其根本原因是( )
A. 种子在不停地吸收水分 B.种子在不停地提供养料
B. C.种子在不停地进行呼吸 D.种子在不停地运送养料
4.在适宜的条件下,下列种子能够萌发的是( )
A. 去掉胚乳的玉米种子 B.虫蛀空了的水稻
B. C.切去胚的小麦种子D.籽粒饱满的菜豆种子
5.在测定种子的发芽率时,随机选出了1000粒小麦种子,在适宜的条件下,有40粒种子未发芽,则这批种子的发芽率为()
A.9.6% B.96%C.4%D.90.6%
6.下列四项是已经测得的某种子的发芽率,最适宜播种的是()
A.60%B.70% C.75% D.94%
7.我国北方在早春播种后,常用塑料薄膜覆盖地面(俗称地膜覆盖)的方法来促进提早出苗的原因是 ( )
A.种子萌发需要避光 B.防止虫害破坏 C.保温、保湿、有利萌发 D.防止风沙
8.大米和豆瓣在肥沃的土壤中不能长出幼苗的原因是( )
A.没有种皮 B.土壤肥料不足 C.没有胚根 D.没有完整的胚
能力提高
9.玉米种子在萌发出幼苗后变得空瘪的原因是胚乳里的营养物质()
A.被土壤微生物分解掉B.胚根吸收掉C.胚吸收发育成幼苗D.土壤动物吃掉
10.分别咀嚼几粒萌发的小麦种子和干燥的小麦种子,你会发现萌发的小麦种子有甜味,这是因为()
A.种子中的淀粉是有甜味的糖分
B.种子中的淀粉分解成有甜味的糖分
C.幼苗光合作用产生了糖分
D.萌发过程中制造出了糖分
第二章第一节根的生长
第2周第2 课时
教学目标
1.总结根生长的主要部位。2.描述根尖的各部分结构和功能。
3.说明在农业中保护根的措施。
教学重、难点:探究根生长的伸长实验
(一)导入: 同学们,我们在上一节课中讲述了种子的萌发的过程,你还记得根是从何发育而来的吗?你观察过哪些植物的根?根的形态是怎样的?根是怎样生长的?根有怎样的作用?
(二)自学指导:根据下列文字及13页图填写课本11页表格
根尖的结构和特点总结为:根尖结构分四部,根冠在前来保护;胞小核大生长点,分裂细胞多无数;停止分裂伸长区,细胞伸长增长没;表皮突起根毛区,主要吸收无机物。
(三)课堂练习
1 根尖各部分细胞伸长最快的是( )
A根冠 B 分生区 C伸长区 D成熟区
2下列有关根毛的叙述正确的是( )
A根毛布满整个根部 B根毛是非常小的根
C根毛的存在有利于增大根的吸收面积 D根毛是成熟区表皮细胞上长出的不定根
3给农作物进行深层施肥,可以促使根系向土壤深处生长,这是依据根的什么特性( )
A向水生长 B向肥生长 C向地生长 D固定植物体
4根的生长主要在进行
5在显微镜下观察根的结构,自下而上是 、 、和 。
6根毛在根尖上的位置 ( )
A随根的生长位置不变 B 随根的生长而畏缩
C随根的生长而向前移动 D随根的生长而落在后面
7植物的根之所以能不断的伸长,是因为( )
A根冠不断的增加新细胞,分生区也不断的增加新细胞
B 伸长区细胞不断伸长,成熟区形成了大量根毛
C根冠不断的增加新细胞,伸长区细胞不断伸长
D分生区细胞不断的分裂增加新细胞,伸长区细胞不断伸长
8当蚕豆种子萌发出2厘米幼根时,用绘图墨水从离根的尖端处开始画八条等距离线,继续将其置于适宜条件下生长,第二天看到幼根又长出几厘米,横线距离现为()
A横线之间的距离保持不变 B成熟区部分间距明显增大
C分生区部分间距明显增大 D伸长区部分间距明显增大
9根尖的表面被称为根冠的结构保护着,随着根在土壤里不断伸长根冠的外层细胞不断磨损,但根冠从不会磨损而消失,原因是()
A分生区细胞能分裂和分化B伸长区细胞伸长生长C根冠细胞特别耐磨D根能够长出根毛
(四)堂堂清
1下列不是根生长特性的是( )
A向地性 B向水性 C向光性 D向肥性
2分生区细胞具有很强的分裂能力,它分裂产生的新细胞向下和向上分化成()
A根冠和分生区 B根冠和伸长区 C根冠和成熟区 D伸长区和成熟区
3分生区细胞的特点是( )
A细胞小,排列紧密细胞壁薄,细胞核大 B细胞伸长,液泡增大
C细胞大,排列疏松,细胞质浓厚 D细胞排列紧密整齐,细胞较小
4下列叙述中,不是根尖成熟区特点是()
A细胞停止生长并开始分化 B表皮细胞向外突出形成根毛
C是吸收水分和无机盐的主要部位 D细胞中液泡小,细胞核大
5判断题:伸长区的细胞演变成成熟区细胞的过程属于细胞衰老 ()
6移栽植物时,最好带土移栽,这是为了 。移栽大型树木一般要剪掉大部分枝叶,并且常选择阴天或傍晚时移栽;移栽菜苗和花草之后常要进行遮阴处理,这样做的目的均是为了 。
课题:第二章 第二节 根对水分的吸收
第3周第1课时
一 学习目标
1 说出植物吸水的主要器官和部位。
2 掌握细胞吸水和失水的原因,并在日常生活中加以应用。
二 重点、 难点:根吸水的主要部位的结构特征。
三 教学过程
1 复习检测
(1) 根尖的结构,自上而下依次是、、 、 。
(2) 在根的结构中,对根尖有保护作用的是,有很强分裂能力且能不断增加新细胞的是使根伸长最快的部位是。
(3) 根具有 、 、 的特性
2 自学指导
(1) 植物吸水的主要器官,根吸收水分的主要部位 ,其中吸水能力最强的是 。
(2) 同样的萝卜条,放在浓盐水中的变 了,清水中的变 ,植物细胞吸水或失水主要取决于 的浓度和的浓度的大小,当细胞液的浓度 周围水溶液的浓度时,细胞就吸水;反之,细胞就失水。
(3) 不同的植物一生中消耗的水量是 ,同一种植物在不同的生长期消耗的水量 .
3 知识点拨
在根尖中,根毛区的根毛细胞扩大了根的吸收面积
(1)根毛区吸水能力最强根毛的细胞壁薄,细胞质少,液泡大
根毛区的上部形成了中空的运输水分的导管
(2)细胞液浓度 周围溶液浓度时,细胞吸水
细胞液浓度 周围溶液浓度时,细胞失水 (烧苗)
4 自我检测
(1)观察根毛时的材料应是 ()
A长的粗大幼根 B长的细小幼根
C有白色“绒毛”的幼根 D 无白色“绒毛”的幼根
(2)细胞吸收水分时,吸收进来的水分进入细胞的( )
A 细胞壁中 B 细胞壁中 C 细胞壁中 D 液泡中
(3)土壤溶液中的水分进入根毛细胞,要依次经过( )
A细胞膜 细胞壁 液泡 细胞质 B细胞壁 细胞膜 液泡 细胞膜
C细胞膜 细胞壁 细胞质 液泡 D细胞壁 细胞膜 细胞质 液泡
(4)我们在实验中观察到的现象,当植物细胞处于周围溶液浓度大于细胞液浓度的环境中时,液泡将会出现的变化是()
A缩小 B变大C消失 D正常
(5)造成植物烧苗现象的主要原因是( )
A土壤溶液浓度大于植物细胞液浓度B化肥过多,土壤温度升高
C土壤溶液浓度小于植物细胞液浓度D土壤溶液浓度等于植物细胞液浓度
(6)给植物浇水的最好方式是 ()
A挖水泵灌溉 B 架水管喷灌
C将带孔的水管埋于地下滴灌D 将水引到农田中漫灌
(7)把新鲜的菜用盐淹几个小时后,菜将发生什么变化 ()
A细胞吸水,菜硬挺B细胞失水,菜硬挺
C细胞吸水,菜软缩D 细胞失水,菜软缩
(8)观察豌豆幼苗的根,发现根尖部分有很多白色的“毛”,这就是根毛,根毛的存在对植物的意义是 ()
A增加根的牢固性 B保护根尖C增加吸收面积 D加快营养的运输
(9)下列水对植物生长意义的说法错误的是()
A随自然条件,水的多少对生命力旺盛的野生植物影响不大
B不同的植物所需的水量不同
C同一植物的不同时期,需水量各有差异
D植物灌溉 的水量和频率应随当地气候……,土质的不同而定
(10)植物根从土壤里吸水的顺序是 ()
A表皮内的各层细胞,根毛细胞,导管,茎,土壤溶液
B土壤溶液,表皮内的各层细胞,茎,根毛细胞,导管
C土壤溶液 根毛细胞 表皮内的各层细胞,导管,茎
(11)植物吸收水分主要是在根尖进行,其中吸水能力最强的是 ()
A 根冠B 分生区C 伸长区 D根毛区
(12)在根的哪一部分可以见到导管细胞( )
A根冠 B分生区 C伸长区 D根毛区
(13)构成植物导管的细胞是 ( )
A连通的死细胞 B不连通的死细胞C连通的活细胞 D不连通的活细胞
(14)根毛细胞适合吸水的结构特点 ()连通
A根毛数量多 B细胞液浓度大 C细胞壁薄、细胞质少、液泡大 D细胞壁厚
5填空
(1) 植物生活所需的水分,主要是通过的从 吸收来的。
(2) 土壤中的水分要渗入到根毛细胞的液泡内,必须依次通过根毛的 、 、-、 。根毛细胞液中的水分先进入 再由输送到茎和其他器官
(3) 给植物浇水不要只湿润土壤表层,因为根吸水的主要部位是根尖的 区,分布在土壤的深层。
课题:第二章 第三节 无机盐与植物生活
第 3 周第2课时
一 学习目标
1 举例说出氮 、磷、 钾等无机盐对植物生长的作用
2 分析不同肥料的特点及在生产生活中的应用
二 重点、难点
1 无机盐对植物生长的重要性 2植物生长,生活所需主要元素的作用
三 教学过程
(一) 复习检测
1 土壤中的水分要渗入到根毛细胞的液泡中,必须依次通过根毛的 , , ,根毛细胞液中的水分先进入再由输送到茎和其他器官里。
2 给植物浇水不要只湿润土壤表层,要 ,因为根吸水的主要部位是根尖的 区 ,分布在土壤的深层。
(二) 自学指导
1 不同植物对各类无机盐的需要量 ,同一植物的不同生长期对无机盐的需要量 。
2 肥料一般分 和 两种,农家肥来源广,成本低,肥效长,能改良,但肥效较慢,适合做基肥,化肥的肥效 ,见效 ,但是养分单一,长期施用会污染环境土壤易板结,因此宜作追肥少量施用。
3 无土栽培是人们根据植物生活所需要的无机盐的 和 ,按照一定的配成 ,在无土的基质中培养植物的方法。
(三) 知识点拨
含氮的无机盐 (叶茂)
无机盐在植物 需要量多的无机盐及其作用含磷的无机盐 (苗壮)
生活中的作用 含钾的无机盐 (腰板硬)
需要量少的无机盐:需要量十分微小,但作用十分重要
植物所必须的元素共有16种,其中13种主要来自土壤。
(四)课堂检测
1、油菜出现只开花不结果的现象,需要施加( )
A含硼的无机盐B含铁的无机盐
C含硫的无机盐 D磷的无机盐
2、种植百合,有人取其地下茎入药,需多施()
A 含氮的无机物B 含磷的无机物
C含钾的无机物D 含锌的无机物
3、栽培白菜、菠菜等植物(可食用部分主要是叶),应多施一些()
A含钾的无机盐 B 含锌的无机盐C含氮的无机盐D 含磷的无机盐
4 对于番茄、花生等我们以利用果实为主的植物,施肥时应多施( )
A含钾的无机盐 B 含氮的无机盐
C 含磷的无机盐D 含铁的无机盐
5、植物需要的无机盐是( )
A由叶吸收B 主要由根吸收 C根、 茎、叶都可以D主要由茎吸收
6、植物的一生需要多种无机盐,其中需要量最多的是( )
A 钾、铜 、氮 B磷、锌、 硼C 磷、钾、氮D氮、硼、铜
7、在水稻生长的后期,为防止灌溉后倒伏,应多施( )
A含氮的无机盐 B含钾的无机盐 C含磷的无机盐 D含锌的无机盐
8、小麦一生中,从土壤中吸收的无机盐需要量最大的时期( )
A种子萌发时期B幼苗时期 C生长旺盛时期D果实和种子成熟的时期
(五)堂堂清
9、用以下三种水培养同样大小的番茄幼苗,一个月后他们的高度的顺序可能是( )
(1)蒸馏水 (2)河水 (3)稻田中的浑水
A(1)(2)(3)中都一样 B(1)中最高(2)中次之(3)中最矮
C(3)中最高(2)中次之(1)中最矮 D(1)(2)中一样(3)中最矮
10、农民说:“锄地出肥”,这一句俗语的主要道理是( )
A土壤疏松,保水力强 B 土壤疏松,储肥多
C土壤疏松,根的呼吸旺盛,有利于无机盐的吸收 D土壤疏松,地温高
11、种植白菜想获高产,应适量多施氮肥的原因是()
A 使枝叶茂盛 B 促进开花\结果产生种子
C 使植物茎秆健壮 D 以上都对
12、苹果树的小叶病发生的主要原因是( )
A害虫的噬咬 B 水质受到重金属的污染
C土壤中缺乏含锌的无机盐 D 土壤中缺乏含铜的无机盐
13、某植物茎秆软弱,叶片的边缘和尖端呈褐色,则此植物缺少的是( )
A含氮的无机盐B含钾的无机盐
C含磷的无机盐 D 含锌的无机盐
14、需要磷肥较多的植物是()
A甘薯和甘蔗 B 番茄和白菜
C 豆角和黄瓜D 芹菜和萝卜
15、植物的根吸收的无机物主要来源于( )
A雨水中B 灌溉的水中
C 土壤溶液中 D 土壤颗粒中
16 下列关于农家肥的说法,错误的是( )
A来源广 B 含多种无机盐,肥效快
C 不污染环境,能改良土壤 D成本低肥效长
课题:第三单元第三章芽的发育与整枝打杈
第 4周第1课时
教学目标:
1、对芽进行分类
2、懂得芽与枝条的关系,及叶芽的结构。
3、应用顶芽与侧芽的关系进行花的剪枝。
重点:叶芽的结构
难点:叶芽与枝条的关系
教学过程:
复习检测:
1.植物生长发育过程中需求量较大的三种元素是:( )、( )、( )
2、菜豆种子的结构: 和两部分组成, 是主要结构。
3、种子萌发的内在条件是 、 、 且在 。
4、种子萌发的外界条件是适量的 、充足的和适宜的。
5、 根生长具有向 生长、向 生长和向 生长的特性。
自学指导:
新课导入:种子萌发后,幼苗生长,主要表现在根的向下生长与茎的向上生长.芽的发育与整枝打杈主要描述了枝条的生长过程.
一、观察:
芽的类型(24页小词典)按照芽的着生部位不同分为和 两种;按照将来发育情况不同分为 、 、和三种。
讨论:(1)叶芽将来发育成形状 。(2)花芽将来发育成 形状。
(3)叶芽的结构
讨论:叶芽与枝条的关系:(课本24页)连线
二、探究(课本24页)顶芽与侧芽生长关系如何?
结论:侧芽与侧芽生长相互影响不大,但顶芽旺盛生长会抑制 生长。反之:顶芽停止生长,侧芽 。
三、实际用:顶端优势
1、顶端优势的利用:(1)农业上整枝、打杈如苹果树剪枝、棉花摘心、果树除芽。
(2)林业上行道树去顶芽或主茎,用材林木去侧芽。
测一测
1、既能发育成枝条,又能发育成花的芽叫做( )。
A.顶芽 B.花芽 C.侧芽 D.混合芽
2、芽中将来发育成茎的部位是()。
A.芽原基 B.芽轴 C.生长点 D.叶原基
3、种植棉花时,常摘掉棉花枝条的顶芽,原因是( )。
A.防止生长过快 B.促进枝条分枝生长
C.防止棉花长得过高 D.促进叶的生长
4、顶芽生长与侧芽生长的关系是( )。
A. 侧芽根顶芽一样,生长都很快。
B. 顶芽和侧芽生长速度一样。
C. 生长旺盛的顶芽会抑制侧芽的生长。
D. 两者没有什么关系。
5、顶端优势有利于植物( )
A.向高生长 B.长得粗壮
C.叶长得茂盛D.开花结果
6、芽按照着生部位分可以分为顶芽和( )
A.侧芽 B.花芽 C.叶芽D.混合芽
7、在叶芽的结构中,将来可以发育成侧芽的结构是( )
A.生长点B.芽原基C.芽轴 D.幼叶
课题:第四章 第一节 光和作用的产物
第4周第2课时
一 学习目标
1概述绿色植物为所有生物提供食物和能量
2说明绿色植物有助于维持生物圈中的碳氧平衡
3探究光合作用的产物
二 教学重、难点
探究光合作用的产物
三、教学过程
新课导入为什么绿色植物在有光和无光的情况下长势不同?植物在阳光下能产生什么物质呢?
(一)预习指导:学生学习课本28页的探究竟(1)然后回答下边问题
1、把盆栽的天竺葵放在黑暗处一昼夜的目的是 ()
A降低温度
B停止光合作用
C降低呼吸作用
D消耗运走、耗尽叶肉细胞内的有机物
2、去掉叶片中叶绿素的正确方法( )
A将叶片浸到清水中直接加热
B将叶片浸到酒精中直接加热
C将叶片浸到酒精中隔水加热
D将叶片浸到糖水中隔水加热
3、给酒精浸泡叶片的烧杯隔水加热,原因不正确的是( )
A缓慢开温 B便于仔细观察现象 C均匀受热 D避免酒精燃烧或烧杯炸裂
4、脱掉叶绿素的叶片,呈现出的颜色是 ( )
A透明无色 B白色C淡绿色D黄白色
5、验证是否产生淀粉,所用的试剂是 ( )
A盐水 B糖水 C碘酒 D酒精