泵和风机内部的损失有哪些?造成的损失的原因是什么?
( 1 )机械损失:主要包括轴端密封与轴承的摩擦损失及叶轮前后盖板外表 面与流体之间的圆盘摩擦损失两部分。
轴端密封和轴承的摩擦损失与轴端密封和轴承的结构形式以及输送流体的密度有关。这项损失的功率 约为轴功率的 1 %―5%,大中型泵多采用机械密封、浮动密封等结构,轴端密封的摩擦损失就更小。
圆盘摩擦损失是因为叶轮在壳体内的流体中旋转, 叶轮两侧的流体, 由于受离心
力的作用, 形成回流运动, 此时流体和旋转的叶轮发生摩擦而产生能量损失。这项损失的功率约为轴功率的2%-10%,是机械损失的主要部分。提高转速,叶轮外径可以相应减小高叶轮机械效率。则圆盘摩擦损失增加较小,甚至不增加。
( 2)容积损失:泵与风机由于转动部件与静止部件之间存在间隙,当叶轮转动时,在间隙两侧产生压力差, 因而时部分由叶轮获得能量的流体从高压侧通过间 隙向低压侧泄露,这种损失称容积损失或泄露损失。 容积损失主要发生在叶轮人口与外壳密封环之间及平衡装置与外壳之间。
如何减小: 为了减少进口的容积损失, 一般在进口都装有密封环 (承磨环或口环 ), 在间隙两侧压差相同的情况下, 如间隙宽度 减小,间隙长度 增加,或弯曲次数较多,则密封效果较好,容积损失也较小。
( 3)流动损失:流动损失发生在吸入室、叶轮流道、导叶与壳体中。流体和各 部分流道壁面摩擦会产生摩擦损失; 流道断面变化、 转弯等会使边界层分离、 产
生二次流而引起扩散损失; 由于工况改变, 流量偏离设计流量时, 入口流动角与
叶片安装角不一致,会引起冲击损失。 如何减小:减小流量可减小摩擦及扩散损失,当流体相对速度沿叶片切线流入, 则没有冲击损失,总之,流动损失最小的点在设计流量的左边。
1、机械损失
主要是液体和叶轮前后盖板外表面及泵腔的摩擦损失。
圆盘损失所占比例较大,甚至达到占有效功率的30%。试验表明圆盘损失和转速的三次方成正比,与叶轮外径的五次方成正比。因此,叶轮外径越大,圆盘损失越大。虽然圆盘损失和转速的三次方成正比,但在给定的扬程下,随着转速的提高,叶轮外径相应地减少,圆盘损失成五次方比例下降,所以,随着转速的提高,圆盘损失并不会增加,反而下降,这也是发展高速泵的原因之一。
2、容积损失
一部分液体经叶轮密封环间隙的泄露回到叶轮进口,却得不到有效的利用,形成损失。因此,密封环的间隙是越小越好,但由于加工和装配等原因,其间隙过小可能会形成偏磨或卡死的现象。
3、水力损失
泵过流部分(从进口到出口)液体的流体必然有因速度大小和方向改变而引起的损失,这两部分就是水力损失。可以通过提高过流部件的光洁度以减少这部分损失,尽量选用优秀的水力模型。
(1)水力损失:流体在泵体内流动时,如果流道光滑,阻力 就小些;流道粗糙,阻力就大些,水流进入到转动的叶轮或水流 从叶轮中出来时还会产生碰撞和漩涡引起损失。以上两种损失称 为水力损失。
(2)容积损失:叶轮是转动的,而泵体是静止的,流体在叶 轮和泵体之间的间隙中一小部分回流到叶轮的进口;另外,有一 部分流体从平衡孔回流到叶轮进口或从轴封处漏损。如果是多级栗,从平衡盘也要漏损一部分。这些损失称为容积损失。
(3)机械损失:轴在转动时要和轴承、填料等发生摩擦,叶 轮在泵体内转动,叶轮前后盖板要与流体产生摩擦,都要消耗一 部分功率,这些由于机械摩擦引起的损失总成为机械损失。
2.叶轮与液体摩擦做功造成的损耗,表现为液体温度升高,将机械能转化为热能。
3.液体在泵内流动的摩擦力造成的损耗。
2.容积损失:由于泄漏而引起的损失;
3.机械损失:由于轴承的摩擦、填料函内的摩擦、叶轮旋转引起的损失(轮盘损失)之和;
水力损失包括水力摩擦和局部阻力损失。泵运行一定时间后,不可避免地造成叶轮及导叶等部件表面磨损,水力损失增大,水力效率降低。
泵的容积损失又称泄漏损失,包括叶轮密封环、级间、轴向力平衡机构三种泄漏损失。容积效率的高低不仅与设计制造有关,更与后期管理有关。泵连续运行一定时间后,由于各部件之间摩擦,间隙增大,容积效率降低。
管线进气等原因造成离心泵抽空及空转。
吸程不够或者进水量不足造成泵的气蚀现象,引起泵噪声大、振动大、泵效低。