水泵的性能曲线及水泵效率曲线怎样看
水泵的性能曲线常见的就三条,即流量和扬程曲线,流量和效率曲线,流量和输入功率的曲线,均是以流量为x轴,扬程、效率、输入功率为y轴,从0流量点开始测试直至最大流量点,找到每个工况点x和y轴的交叉点,然后连接绘制一条曲线。这样我们可以看到随着流量的变化,扬程、效率及输入功率的变化曲线。曲线完成后怎么判别呢?以额定的流量和扬程的交点为中心,根据流量和扬程的容差绘制一个十字坐标线,然后看扬程曲线是否与这个十字线相交或相切,如相交或相切,则可判定该水泵扬程性能合格。当然性能曲线还包括效率和输入功率曲线,是以x和y轴的0点为起点至额定流量、扬程的交点做一条射线来进行分析。建议你参考gb/t
3216标准。
k3v泵的流量压力曲线
为了便于后面的理解,先把泵上的各油口的英文代号解释一下,一台液压泵都有S口,T口,P口。
S口=泵的进油口(低压油口)
T口=泵的泄油口。
P口=压力油口,(高压油口)。K3V泵是三连泵,(或是四连泵/五连泵,K3VH泵的H代表叶轮泵,在泵的中间体内有一台叶轮泵)。所以有P1,P2两个高压油口。
K3V系列变量柱塞泵,变量柱塞泵是泵在某一恒定转速下,泵所排出的压力油的流量是变化的,泵排出的压力油的流量多与少的改变是由泵内斜盘摆动角度变化所决定的。斜盘摆动角度从零度倾斜到最大角度15°或从15°度角变化到小于15°角是由泵壳体内有一个液压油缸带动斜盘在泵体内前后移动,能带动斜盘移动的液压油缸,就是泵上一个关键原件,即“伺服变量活塞”。
伺服活塞在泵壳内左右移动是与挖机上的油缸杆的伸出或缩回原理一致的,能改变伺服活塞左右移动的压力油源来两面方面,这二个方面的:一是从取自泵的P口。是泵本身所产的压力油,经过泵壳体内的油道提供给(内分流)泵上的调节器,(南方也叫:提升器)。调节器内的伺服阀控制这股压力油的流量及压力,分配给流向伺服变量活塞的大端,来控制伺服变量活塞左右移动量,内控压力油来自泵的P口泵本身所产生的压力油提供给变量机构的变量方式,名称叫做“自控变量”。
这二方面的二是,外来的压力油提供给调节器的油流是由泵上的齿轮泵提供的。大家把这个齿轮泵也叫做伺服泵,齿轮泵所排出的压力油经外置胶管联接到泵上的比例减压阀进入调节器内(外分流)。
外分流的压力油如直接进入到调节器内的经伺服阀分配给伺服变量活塞,这种变量方式叫做外控变量。
外分流的压力油经过比例减压阀的减压后,进入调节器内,做用在补偿器活塞的小端上,(补偿器活塞也是三阶梯阀,图号621)。这种变量方式叫做电气控制变量。
综上所述;K3V泵变量方式有,内控+外控+电气三种变量方式。
在主泵工作时,从泵P口内分流的压力油经泵壳体内的油道直接作用在伺服变量活塞小端面上,这道压力油只要是主泵工作,它始终是做用在伺服变量活塞小端上。如果变量活塞大端油道是泄油状态时,做用在伺服变量活塞小端在压力油,使伺服变量活塞向大端方向移动,此时,泵的斜盘倾角最大(15°)。
内分流的压力油通过调节器上的伺服机构分配后,流向变量活塞的大端面上,这时,如果同样压差的压力油同时做用到伺服变量活塞大,小端面上。伺服变量活塞大小端面都受到同等压力的油压作用时,因变量活塞大小端面积差,使伺服变量活塞向小端移动,斜盘回到零位。
K3V泵变量特性曲线是压力上升,流量必须减小,压力上升到最高数值时,泵的流量几乎是最少,当泵压力下降,泵的流量逐步上升,当泵压力降到50bar时,泵的流量最大,这些特性曲线变化,是变量活塞大端面受到多大的压力油作用力结果,也是调节器内的伺服阀分配给定压力值变化的结果,那么,伺服阀是根什么来分配压力油呢?
调节器内的伺服阀有2个感知反馈机构,在这里我用最简单方法讲述一下:
一是:从挖掘机上多路阀(分配器)上,有2根胶管联接到泵的前后两个调节器上(Pi反馈的压力油)。反馈压力油作用在伺服阀杆的一端上即(第一感知)
第二感知,变量调节器上有一个“拔叉”。这个拨叉也叫做回馈杆(图号611)。回馈杆的上部有两个操纵杆,图(号位612,613)操纵一个阀杆(芯),这个阀杆(图号652)左右移动,阀杆上的油道控制边处与阀杆外面的阀套(图号622)油孔对应有三种状态。我讲到此时真不知该怎么样讲,不知友人能看董否?这三种状态分别是全遮盖,左开口,右开口。这三种状态就是阀套622是固定的,阀杆在阀套孔中移动,是在中位还是向左移动及向右移动,
全遮盖时,阀杆在中位,封闭伺服活塞大端的压力油,使斜盘固定在某一固定角度上。
右开口,阀杆右左移动,压力油经阀杆控制边流向伺服活塞的大端,使斜盘向小摆角倾回。
左开口,伺服变量活塞大端压力油排出,伺服活塞小端在压力油的做用下,带动斜盘向最大摆角倾斜,使泵达到最大排量。
今天就讲到这里,下讲泵上的比例减压阀的作用。
比例减压阀其作用是按电信号指令的大小将A口压力降低到希望值并能保持恒定,即能降低从P口到A口的压力,同时能限制从A口到T口的压力值
比例减压阀在K3V泵上的作用有二,一是在发动机在某一个恒定转数下,对泵的排量精确控制。同时控制P1与P2泵两台调节器压力与流量的平衡。
二是在发动机在最低转速状态,全部操作伺服阀都在中位时,挖掘机的发动机上的转数传感器把发动机的转动数据提供给电脑,电脑根据所得到的数据给定比例减压阀一个固定的电流值(电信号指令)。外控压力油经过比例减压阀P口做用在调节器内的补偿器活塞(图号621)的小端面上,使补偿器活塞向右移动来推动623补偿器连杆也向右移动,达到右开口状态,另一路外控压力油通过比例减压阀上的两个单向阀后,进入调节器内的孔道,这股外控压力油经阀杆控制边流向伺服活塞的大端,伺服变量活塞在压力油的作用下向小端方向移动,使斜盘的倾角最小(零度),来来减少发动机的负荷。这样就可防止不必要的能源消耗。
发动机在滞速状态下,电脑给定的比例减压阀的电流值最大(800MA),外控压力油进入比例减压阀P口(45bar),经过比例阀的A口液阻变值后,做用在621补偿器活塞的小端上压力值是(38 bar)。
发动机在最高转数状态下,电脑给定的比例减压阀的电流值最小(200MA),外控压力油进入比例减压阀P口(45bar),经过比例阀的A口液阻变值后,做用在621补偿器活塞的小端上压力值是(2,5 bar。)
比例减压阀动态检测方法:
在此阀的阀体上,有一个19*19的外六角螺堵,松开此螺堵后,在此位置上安装一个测压接头,再接上压力表,在发动机转数变化,压力显示也跟随变化。
另一种测试方法采用万能表来测量比例减压阀的电流值,只能测一根线。
我现回答您的问题:压力油在管道内流动,遇到小孔(即是一个阻尼孔)就产生一个压力差,压力差的变化比,要看变径差及细小孔道的孔长,这就是液压的一个很重要理论《液阻》。、广义的液阻:凡是能局部改变液流的通流面积使液流产生压力损失(阻力特性)或在压力差一定情况下,分配调节流量(控制特性)的液压阀口以及类似结构,如薄壁小孔、短孔、细长孔、缝隙等,都称之为液阻。各种液阻都应满足流量压力方程,液阻分为:1液压桥路(液压半桥)液阻2动态阻尼液阻。3动压反馈液阻。4各种控制阀口的液阻。5一般固定阀口。6一般可变阀口等。
液阻又可按性质区分为:1固定液阻。2可调液阻。3可控液阻。
液阻的应用场合,可以讲液压元件与系统的方方面面都要用到。就是辟开各种控制阀口,对常规狭义的液阻,情况也是一样的。各种阀、泵、马达、液压缸里都有,例如液压缸的缓冲机构中最要紧的就是阻尼孔。现今的变量泵中也是到处可以看到液阻。
以上这两种,其流量公式就是传统的:流量q=系数X阻尼孔面积X阻尼孔前后压差的根方。
Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。
因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。
1、流量不同出口压力也不同;
2、特性曲线是实际测试得到的,不是根据参数得到的。
你选用的水泵出厂资料里有特性曲线,你可以查看。
离心泵的特性曲线图如下
水泵的性能参数如流量Q 扬程H 轴功率N 转速n效率η之间存在的一定的关系。他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。比转速在80~150之间的离心泵具有平坦的性能曲线。比转数在150以上的离心泵具有陡降性能曲线。一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
扩展资料
工作原理
离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须灌满水形成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。
水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故!
参考资料:百度百科-管道离心泵
ps:曲线是泵的外特性流量-扬程/功率/效率/Npsh的关系曲线,对于某一固定的泵来说,正常工况下流量确定其扬程也可根据曲线确定,和工作压力无关。
2、原理:变频恒压供水自动控制装置以变频方式工作时,水泵电机以软启动方式启动后开始运转,由远传压力表检测供水管网实际压力,管网实际压力与设定压力经过比较后输出偏差信号,由偏差信号控制调整变频器输出的电源频率,改变水泵转速,使管网压力不断向设定压力趋近.这个闭环控制系统通过不断检测、不断调整的反复过程实现管网压力恒定,从而使水泵根据需水量自动调节供水量,达到节能节水的目的.
PLC的主要控制作用:(1)控制多台水泵(包括备用泵)循环软启动,周期性地以变频方式工作;(2)控制备用泵的自动启动.当第一台水泵电机以变频方式运行,并达到额定功率(即变频器输出电源频率达到50H),而供水管网压力未达到设定压力时,第二台水泵电机会自动启动,并以工频方式运行,这时若管网压力仍不能达到设定压力时,第三台水泵电机会自动启动,第一台水泵仍以变频方式运行,达到保持管网恒压的目的,投入运行的水泵数量由装置根据管网压力自动控制.
水位显示控制器设有上、中、下3个水位控制限,当池水位从上限降到中限位置时,控制器输出补水泵启动信号,使补水泵向池内补水,补至上限时,控制器输出补水泵停机信号,停止补水;当池水位降到下限时,控制器输出取水泵停机信号,使取水泵停止取水,待水位上升到中限后,控制器使取水泵自动启动,恢复取水.
QN曲线,需要丝杠闸门控制流量,计量流量、输入功率。
Qη曲线,需要丝杠闸门控制流量,计量流量、根据Q、H计算有效功率后计算效率。
以上如果画曲线,原则上必须找到10个以上工况点,然后连接成曲线。
建议:以上计量器具最好用精度相对高的标准器具进行计量。