工业水泵一般怎么分类
1、按照工作原理、结构分类:
1)叶片泵:
通过泵轴旋转时带动各种叶轮叶片给液体以离心力或轴向力,输送液体到管道或容器,如离心泵、旋涡泵、混流泵、轴流泵。
2)容积式泵:
利用泵缸体内容积的连续变化输送液体的泵,如往复泵、活塞泵、齿轮泵、螺杆泵。
3)其他形式的泵:
有利用电磁输送液态电导体态的电磁泵利用流体能量来输送液体的泵,如喷射泵、空气升液器等。
2、按用途分类:
1)工艺流程泵:
包括给料泵、回流泵、循环泵、冲洗泵、排污泵、补充泵、输出泵等。
2)公用工程泵:
包括锅炉用泵、凉水塔泵、消防用泵、水源用深井泵等。
3)辅助用途泵:
包括润滑油泵、密封油泵、液压传动用泵等。
4)管路输送泵:
输油管线用泵、装卸车用泵等。
3、按输送介质分类:
1)水泵:
包括清水泵、锅炉给水泵、凝水泵、热水泵。
2)耐腐蚀泵:
包括不锈钢泵、高硅铸铁泵、陶瓷耐酸泵、不透性石墨泵、衬硬胶泵、硬聚氯乙烯泵、屏蔽泵、隔膜泵、钛泵等。
3)杂质泵:
包括浆液泵、砂泵、污水泵、煤粉泵、灰渣泵等。 4)油泵:冷油泵、热油泵、油浆泵、液态烃泵等。
4、按使用条件分类:
1)大流量及微流量泵:
流量分别为300m3/min及0.O1L/min2)高温泵及低温泵:高温达500℃,低温至一Z53℃
3)高压泵、中压泵及低压泵:
高压泵压力达6MPa以上中压泵压力2~6MPa;低压泵压力低于2MPa;
4)高速泵及低速泵:
自吸泵高速达24000r /min,低速5—10r/min
5)精确的计量泵:
流量的计量精度达±0. 3%
6)高粘度泵:
粘度达数千帕秒(Pa·s)。
美宝环保主要是生产工业用泵,可能有很多客户在咨询水泵时,不太了解自己的需求,这里简单的介绍主要的三种水泵。
1、耐腐蚀离心泵。
离心耐腐蚀用泵主要是单级单吸悬臂式耐腐蚀泵,用于输送不含固体颗粒、腐蚀性流体,使用温度在0~100~C。在水处理中多用于离子交换工艺中H水的输送。输送介质接触的过流部件材质采用不锈钢、塑料两种材质。二者的区别是泵体、泵盖与托架的连接方式不同。前者是泵体固定在托架上,然后泵盖固定在泵体上后者是泵体借助于泵盖的止口固定在托架上,同时也将泵盖固定。
2、往复式泵
往复式泵依靠在泵缸中作往复运动的活塞(或柱塞)改变泵缸的容积,配合两个逆止阀的作用,达到吸入或排出液体的目的。往复泵按活塞的构造,可分为活塞式往复泵、塞式往复泵和隔膜式往复泵三种。活塞式往复泵的主要部件是活塞,依靠活塞在泵缸中工作,吸入或排出液体。柱塞式往复泵的主要部件是柱塞(呈柱状体),比活塞接触面积大,耐磨。其作用方式与活塞完全相同。隔膜式往复泵的主要部件也是柱塞,与柱塞式往复泵不同的是:在泵的工作室与缸体之间以胶质(或钢质)隔膜分隔,当柱塞做往复运动时,隔膜随之来回鼓动,起到吸入或排出液体的作用。
3、污水泵
污水泵主要由泵体、泵盖、轴承箱、叶轮、轴等几部分组成。主要用于输送80~C以下带有纤维或其他悬浮物的流体,以及具有酸性、碱性或其他腐蚀性的污水。常用的排污泵有两大类:一种是普通电动机的污水泵,另一种是潜污泵。
选高压多级水泵列出基本数据:
1、介质的特性:介质名称、比重、粘度、腐蚀性、毒性等。
2、介质中所含固体的颗粒直径、含量多少。
3、介质温度:(℃)
4、所需要的流量 一般工业用泵在工艺流程中可以忽略管道系统中的泄漏量,但必须考虑工艺变化时对流量的影响。农业用泵如果是采用明渠输水,还必须考虑渗漏及蒸发量。
5、压力:吸水池压力,排水池压力,管道系统中的压力降(扬程损失)。
6、管道系统数据(管径、长度、管道附件种类及数目,吸水池至压水池的几何标高等)。
如果需要的话还应作出装置特性曲线。 在设计布置管道时,应注意如下事项:
1、合理选择管道直径,管道直径大,在相同流量下、液流速度小,阻力损失小,但价格高,管道直径小,会导致阻力损失急剧增大,使所选泵的扬程增加,配带功率增加,成本和运行费用都增加。因此应从技术和经济的角度综合考虑。
2、排出管及其管接头应考虑所能承受的最大压力。
3、管道布置应尽可能布置成直管,尽量减小管道中的附件和尽量缩小管道长度,必须转弯的时候,弯头的弯曲半径应该是管道直径的3~5倍,角度尽可能大于90℃。
4、泵的排出侧必须装设阀门(球阀或截止阀等)和逆止阀。阀门用来调节泵的工况点,逆止阀在液体倒流时可防止泵反转,并使泵避免水锤的打击。(当液体倒流时,会产生巨大的反向压力,使泵损坏)
选高压多级水泵确定流量扬程流量的确定:
1、如果生产工艺中已给出最小、正常、最大流量,应按最大流量考虑。
2、如果生产工艺中只给出正常流量,应考虑留有一定的余量。对于ns>100的大流量低扬程泵,流量余量取5%,对ns<50的小流量高扬程泵,流量余量取10%,50≤ns≤100的泵,流量余量也取5%,对质量低劣和运行条件恶劣的泵,流量余量应取10%。
3、如果基本数据只给重量流量,应换算成体积流量。
你好很高兴回答你的问题上海彤伟告诉你答案希望被采纳
1、在遇有压力不正常时,应首考虑到系统内是否已充满水。这时可检查膨胀水箱内是否有水。膨胀水箱设在系统的最高处,具有容纳系统冷冻水膨胀量和向系统补水的作用。如果补水阀被误关闭,水则不能补入系统,这样空气就会进行管网,造成水循环不畅,导致压力不正常。 2、如果系统中阀门操作不当,将会造成管网阻力不平衡,流量分配不均,从而影响水泵进出口压力不正常。 3、在许多空调工程中,除在循环泵入口设有大口径过滤器外,风机盘管及空调机处设有大口径过滤器,过滤器多达几百只甚至上千只。 在无缝管预安装再镀锌两次安装的工程中,由于管网受污染的机会小些,过滤器堵塞的情况要好些,但在一次焊接的工程中则要严重些。因此施工时要特别注意。 4、系统运行时,水中不可避免混有空气,这里要及时检查所有的自动排气阀工作是否正常,并拧开风机盘管排气螺丝手动排气。特别要注意立管顶端最易积聚空气,阻碍冷冻水正常流动。 5、在多台冷冻水循环泵并联的系统中,通常会有一台备用泵。在调试运用时要注意备用泵的进出口阀门是否已关闭。止回阀阀瓣能否复位止回。如果止回阀失灵,其它泵运行时冷冻水就有可能经过备用泵短路,浪费能量,影响压力。 冷水机组、水泵被推倒之问题 问题的提出:1998年3月,厦门大西洋海景城4台2800KW冷水机组以及配套冷冻水泵和冷却水泵在试压过程中发生水平推移达50毫米以上,重达15T的冷水机组甚至从减振台座上被推倒。所有橡胶挠性接头均被拉直至椭圆形。 问题的分析:原业主和施工人员担心试压时未经清洗的污水会进入冷水机组和水泵。由于在挠性接头后加上钢插板,当作水压试验时,作用于钢插板的水压力由于挠性接头的伸缩性而成为一个自由端,沿箭头方向运动而最终推倒冷水机组。 问题的解决:拆去损坏的挠性接头,冷水机组,水泵复位,试压时连同冷水机组水泵一道并入系统同时试验,若要加钢插板也只能加压阀门后,挠性接头前。 风冷冷水机组无法启动之问题 问题的提出:1998年4月,厦门共和电子城空调系统。系统作试运行时发现冷冻水泵出口压力仅0.01MPa,设于冷水机组回水管入口处压力表为0MPa,在此情况下冷水机组水流开关无法闭合,机组亦无法启动。 问题的分析:以上现象和仅有0.01MPa出水压力说明水泵和整个7层部分管内充满着空气,水泵空转着只是偶然吸了点水上来。分布在7层系统最高处的数个自动放气阀也不起作用。 分析其原因,主要是膨胀水箱高度距水泵入口处仅2米,如此低的水压力无法将系统高处管内空气顺利排出。 问题的解决:为了顺利将系统内空气排出,将系统内水放干净后重新充水,充水时将所有高处自动放气阀取下并打开自动放气阀前的阀门。要求充分缓慢,让水缓慢地由下区漫及上区,漫及上区后下区末端设备充分放气。 当充水完毕后装上各高点自动放气阀,仅留水泵出口管放气阀管口(下称喷口)处放气阀不装。开启水泵,喷口处水流呈音乐喷泉状态,时高时低的喷流将系统内空气缓慢地带出来,随着喷流的越来越高以及越来越稳定,说明系统内空气越排得干净,当喷口水流高达6米左右,不再跌落时,喷流即可结束。关闭喷口处阀门,水泵出口表压为0.25MPa,此时顺利地开启冷水机组。 冷水机组因水流开关不能起动之问题 问题的提出:1997年9月,厦门宾馆8#楼2台1350KW离心式冷水机组作启动调试。调试过程发现冷冻水系统水流开关闭合,冷却水系统水流开关无法闭合而不能启动冷水机组。 问题的分析:观察水流开关安装位置是符合装在5倍管道长度直管段上,基本符合要求,观察冷凝器冷却水进出水压差为0.18MPa,说明冷却水流量很大。观察蒸发器冷冻水进出水压差为0.05MPa,说明冷冻水流量偏小。 仔细分析,可能是流量大小对水流开关影响。水流对水流开关簧片冲击较小,水流开关簧后片角度合适带动摇臂触点闭合。当流量较大时,水流对水流开关簧片冲击很大导致簧片沿水流方面后弯得很利害,再由于插入管口偏大,后弯的簧片顶住管口处,过度的簧片后弯反而使水流开关摇臂变直,开关触点无法闭合。 冷却水系统设计 制冷机冷却水量估算表 活塞式制冷机(t/kw)0.215 离心式制冷机(t/kw)0.258 吸收式制冷机(t/kw)0.3 螺杆式制冷机(t/kw)0.193~0.322 冷却水系统的补水量(补水管) 冷却水系统的补水量包括: 1蒸发损失2漂水损失3排污损失4泄水损失 当选用逆流式冷却塔或横流失冷却塔时,空调冷却水的补水量应为: 电动制冷1.2—1.6% 溴化锂吸收式制冷1.4—1.8% 还应综合考虑各种因素的影响,因蒸发损失是按最大冷负荷计算的,实际上出现最大冷负荷的时间是很短的,空调系统绝大多数时间是部分负荷下运行的,如果把上述补水量适当减少一点,绝大多数时间都能在控制的浓度倍数下运行,很短时间内水质超出要求的范围,不会对系统产生危害. 综上所述,建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。 冷却水系统存在的问题 (1)吸入管道上阻力过大,而且返上返下管内窝气,冷却水量减少,使系统不能正常运行。 (2)并联两台或更多的冷却塔吸入管道的阻力不平衡。当单台使用时经常有空气吸入,造成水击、振动等。且有的溢流,有的补水。 (3)各塔的水盘水位应安装在同一标高上,各盘之间作平衡管连通。接管时注意各塔至总干管上的水力平衡。做自动控制时供回水支管上均加电动阀。 冷却塔漂水过大之问题 问题的提出:1997年8月,厦门合作银行一台150T/h圆形逆流低噪冷却塔,系统运行半个月,发现冷却塔漂水严重,观察运行中的冷却塔,可看到一股白雾冲天而起,并有小水珠飘脸的感觉。 问题的分析:观察冷水机组冷凝器进出水管处压力表,发现进出水压差高达0.2Mpa,说明进出冷凝器水量远远超出额定之流量。观测冷却水泵运行电流,也可说明流量超过额定流量。观察塔顶布水器运转情况,布水器转动飞快,布水器喷口喷射角度过于朝下,水高速喷出喷口后雾化和水冲击填料层溅激起小水珠是漂水过大的直接原因。 问题的解决:由于系统全套安装完毕,已无法更改冷却水泵流量和扬程,只有通过阀门调节。一边观察进出水压力表,一边调整阀门开启度将进出水反差锁定在0.08MP。调整冷却塔布水器喷射角度旋转向水平方面15度。 冷凝水系统设计 冷凝水管的设计 通常,可以根据机组的冷负荷Q(kW)按下列数据近似选定冷凝水管的公称直径; Q=1513~12462kWDN=125mmQ>12462kWDN=150mm 注:(1)DN=15mm的管道,不推荐使用。 (2)立管的公称直径,就与水平干管的直径相同。 (3)本资料引自美国“McQUAY”水源热泵空调设计手册。 风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项: 沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。 当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱温度)大50%左右。水封的出口,应与大气相通。 为了防止冷凝水管道表面产生结露,必须进行防结露验算。 注: (1)采用聚氯乙烯塑料管时,一般可以不必进行防结露的保温和隔汽处理。 (2)采用镀锌钢管时,一般应进行结露验算,通常应设置保温层。 冷凝水立管的顶部,应设计通向大气的透气管。 设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。 冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定。 一般情况下,每1kW冷负荷每1h约产生0.4kg左右冷凝水;在潜热负荷较高的场合,每1kW冷负荷每1h约产生0.8kg冷凝水。 空调水系统设计中应注意的问题 (1)放气排污。在水系统的顶点要设排气阀或排气管,防止形成气塞;在主立管的最下端(根部)要有排除污物的支管并带阀门;在所有的低点应设泄水管。 (2)热胀、冷缩。对于和度超过40m的直管段,必须装伸缩器。在重要设备与重要的控制阀前应装水过滤器。 (3)对于并联工作的冷却塔,一定要安装平衡管。 (4)注意管网的布局,尽量使系统先天平衡。实在从计算上、设计上都平衡不了的,适当采用平衡阀。 (5)要注意计算管道推力。选好固定点,做好固定支架。特别是大管道水温高时更得注意。 (6)所有的控制阀门均应装在风机盘管冷冻水的回水管上。 (7)注意坡度、坡向、保温防冻。 设备水压力降估算(日本) 设备离心式冷水机组吸收式冷水机组冷却塔热交换器冷热水排管风机排管调节阀 蒸发器冷凝器蒸发器冷凝器 压力降kPa50~10050~10060~16060~16020~8020~5020~5010~2030~50
你确定了使用条件才好详细说明。