离心泵内的功率损失有哪些?
离心泵内的功率损失有三种:水力损失、容积损失、机 械损失。
(1)水力损失:流体在泵体内流动时,如果流道光滑,阻力 就小些;流道粗糙,阻力就大些,水流进入到转动的叶轮或水流 从叶轮中出来时还会产生碰撞和漩涡引起损失。以上两种损失称 为水力损失。
(2)容积损失:叶轮是转动的,而泵体是静止的,流体在叶 轮和泵体之间的间隙中一小部分回流到叶轮的进口;另外,有一 部分流体从平衡孔回流到叶轮进口或从轴封处漏损。如果是多级栗,从平衡盘也要漏损一部分。这些损失称为容积损失。
(3)机械损失:轴在转动时要和轴承、填料等发生摩擦,叶 轮在泵体内转动,叶轮前后盖板要与流体产生摩擦,都要消耗一 部分功率,这些由于机械摩擦引起的损失总成为机械损失。
1、机械损失
主要是液体和叶轮前后盖板外表面及泵腔的摩擦损失。
圆盘损失所占比例较大,甚至达到占有效功率的30%。试验表明圆盘损失和转速的三次方成正比,与叶轮外径的五次方成正比。因此,叶轮外径越大,圆盘损失越大。虽然圆盘损失和转速的三次方成正比,但在给定的扬程下,随着转速的提高,叶轮外径相应地减少,圆盘损失成五次方比例下降,所以,随着转速的提高,圆盘损失并不会增加,反而下降,这也是发展高速泵的原因之一。
2、容积损失
一部分液体经叶轮密封环间隙的泄露回到叶轮进口,却得不到有效的利用,形成损失。因此,密封环的间隙是越小越好,但由于加工和装配等原因,其间隙过小可能会形成偏磨或卡死的现象。
3、水力损失
泵过流部分(从进口到出口)液体的流体必然有因速度大小和方向改变而引起的损失,这两部分就是水力损失。可以通过提高过流部件的光洁度以减少这部分损失,尽量选用优秀的水力模型。
水泵在工作过程中有一部分能量损失,其中包括机械磨损、容积损失和水力损失。尽量减少这些损失,以提高水泵效率,应在以下几方面采取措施:
一、提高流道的表面光洁度
凸凹不平的界面对水流会产生较大的阻力,水泵的过流表面可以采取刷涂高分子涂料来减小水流阻力。如果泵、叶轮表面光滑(这种表面称为水力光滑表面)表面阻力较小,消耗能量就小。
二、尽量让水泵工作在额定工况下
水泵在不同流量和进出口压力下,效率是变化的,一般厂家说明书中有工作曲线。额定工况下水泵效率应该是较高的工作状态。
三、尽量减少管路损失
1、闸阀和逆止阀能不用就不用。
2、进水管要有足够的淹没深度当淹没深度不够时,水会产生游涡,将空气带入水泵,降低泵的效率。枯水期进水管的淹没深度应大于0.5米。
3、选用经济管径,水管直径越大,阻力就越小。。
4、及时清除流道堵塞物,如果有杂质堵塞进出水管、叶轮或导流壳流道,将使水量减少。
5、如果轴向间隙、叶轮口环间隙大,容积效率会下降。因此要定期检查口环间隙。轴向间隙的数值,应根据出厂说明书规定调整。
轴端密封和轴承的摩擦损失与轴端密封和轴承的结构形式以及输送流体的密度有关。这项损失的功率 约为轴功率的 1 %―5%,大中型泵多采用机械密封、浮动密封等结构,轴端密封的摩擦损失就更小。
圆盘摩擦损失是因为叶轮在壳体内的流体中旋转, 叶轮两侧的流体, 由于受离心
力的作用, 形成回流运动, 此时流体和旋转的叶轮发生摩擦而产生能量损失。这项损失的功率约为轴功率的2%-10%,是机械损失的主要部分。提高转速,叶轮外径可以相应减小高叶轮机械效率。则圆盘摩擦损失增加较小,甚至不增加。
( 2)容积损失:泵与风机由于转动部件与静止部件之间存在间隙,当叶轮转动时,在间隙两侧产生压力差, 因而时部分由叶轮获得能量的流体从高压侧通过间 隙向低压侧泄露,这种损失称容积损失或泄露损失。 容积损失主要发生在叶轮人口与外壳密封环之间及平衡装置与外壳之间。
如何减小: 为了减少进口的容积损失, 一般在进口都装有密封环 (承磨环或口环 ), 在间隙两侧压差相同的情况下, 如间隙宽度 减小,间隙长度 增加,或弯曲次数较多,则密封效果较好,容积损失也较小。
( 3)流动损失:流动损失发生在吸入室、叶轮流道、导叶与壳体中。流体和各 部分流道壁面摩擦会产生摩擦损失; 流道断面变化、 转弯等会使边界层分离、 产
生二次流而引起扩散损失; 由于工况改变, 流量偏离设计流量时, 入口流动角与
叶片安装角不一致,会引起冲击损失。 如何减小:减小流量可减小摩擦及扩散损失,当流体相对速度沿叶片切线流入, 则没有冲击损失,总之,流动损失最小的点在设计流量的左边。
参数主要有流量和扬程,此外还有轴功率、转速和必需汽蚀余量。
流量是指单位时间内通过泵出口输出的液体量,一般采用体积流量;
扬程是单位重量输送液体从泵入口至出口的能量增量 ,对于容积式泵,能量增量主要体在压力能增加上,所以通常以压力增量代替扬程来表示。
泵的效率不是一个独立性能参数,它可以由别的性能参数例如流量、扬程和轴功率按公式计算求得。反之,已知流量、扬程和效率,也可求出轴功率。
泵的各个性能参数之间存在着一定的相互依赖变化关系,可以通过对泵进行试验,分别测得和算出参数值,并画成曲线来表示,这些曲线称为泵的特性曲线。每一台泵都有特定的特性曲线,由泵制造厂提供。通常在工厂给出的特性曲线上还标明推荐使用的性能区段,称为该泵的工作范围。
泵的实际工作点由泵的曲线与泵的装置特性曲线的交点来确定。选择和使用泵,应使泵的工作点落在工作范围内,以保证运转经济性和安全。此外,同一台泵输送粘度不同的液体时,其特性曲线也会改变。
通常,泵制造厂所给的特性曲线大多是指输送清洁冷水时的特性曲线。对于动力式泵,随着液体粘度增大,扬程和效率降低,轴功率增大,所以工业上有时将粘度大的液体加热使粘性变小,以提高输送效率。
扩展资料工作原理:
叶轮安装在泵壳内,并紧固在泵轴上,泵轴由电机直接带动。泵壳中央有液体吸管。液体经底阀和吸入管进入泵内。泵壳上的液体排出口与排出管连接。
在泵启动前,泵壳内灌满被输送的液体;启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。
在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。
直线泵工作原理不同与其它任何泵,是采用磁悬浮原理和螺旋环流体力学结构实现流质推进,即取消轴,取消轴连接,取消轴密封结构。启动后电流转化为磁场,磁场力驱动螺旋环运转,即螺旋环提升流质前进。
参考资料:百度百科-泵