水泵气蚀现象产生的原因?
水泵气蚀现象产生的本质原因是入口压力小于流体输送温度下的饱和蒸气压导致的。
泵进水口处的绝对压力减小到当时水温下的汽蚀压力时,水发生汽化。水在入水口形成气体,从而入水口形成许多小气泡。这些小气泡随水流进高压区时,气泡迅速破裂,周围液体立即填充原气泡空穴,由于气泡破裂时间很短,所以形成高达几百兆帕的水力冲击。
气泡不断地形成与破裂,巨大的水力冲击以每秒钟几万次的频率反复作用在叶轮上,时间一长,就会使叶轮的叶片逐渐因疲劳而剥落;同时,气泡中还夹杂有一些活泼气体(如氧气),对金属的光滑层因电解而逐渐变得粗糙。
金属表面粗糙度被破坏后,更加速了机械剥蚀。另外,气泡形成与破裂的过程中,会使过流部件两端产生温度差异,其冷端与热端形成电偶而产生电位差,从而使金属表面发生电解作用,金属的光滑层因电解而逐渐变得粗糙。
在机械剥蚀、化学腐蚀和电化学的共同作用下,金属表面很快出现蜂窝状的麻点,并逐渐形成空洞而损坏,这种现象称之为汽蚀。
汽蚀现象发生后对泵的影响:
1、泵的性能改变
汽蚀初生时,对水泵外特性并无明显影响。汽蚀发展到一定程度后,水泵的功率、效率、流量和扬程等参数会突然下降。当汽蚀充分发展后,水流的有效过流面积会减小很多,以致引起水流中断,不能工作。
2、引起振动和噪声
气泡破裂时,液体质点互相冲击,产生噪音和机组振动,两者互相激励使泵产生强烈振动,称为汽蚀共振现象。
3、过流部件表面的破坏
汽蚀破坏将大大缩短水泵的寿命,剥蚀和腐蚀严重时,会产生叶片断裂或穿孔等重大事故。
气蚀:流体在高速流动和压力变化条件下,与流体接触的金属表面上发生洞穴状腐蚀破坏的现象。
水环式真空泵在达到该泵极限真空时会出现气蚀现象。
安装气蚀阀,当出现气蚀现象,打开气蚀阀可气蚀可消除。
亨联真空为您解答,希望对您有帮助!
1、入口压力小于流体输送温度下的饱和蒸气压。
2、泵吸入真空度大于允许吸入真空度。
3、离心泵安装高度提高,导致泵内压力降低。
汽蚀现象。主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处。汽蚀导致水泵性能变坏、装置运行不稳定、金属表面材料疲劳剥蚀、噪音和振动加剧等不良后果。因此,在设计和运行管理中要分析、研究和监测水泵汽蚀,及时采取有效的防护措施。
扩展资料
为防止或减轻水泵汽蚀,应从规划设计、水泵选型、制造工艺、材质和运行管理等方面采取措施:
1、正确选定水泵安装高程。
2、正确设计进水池和进水管道或流道。避免池内出现漩涡和偏流,保证进水喇叭口有足够的淹没深度。对于卧式离心泵,叶轮进口前应有不小于4~5倍泵进口直径的直管长度,以使叶轮进口流态较为均匀。
3、及时清淤,避免拦污栅堵塞,以减小吸水管或进水流道的水力损失,提高装置的有效汽蚀余量。避免使用进水管道的闸阀进行水泵工作点的调节,以免造成水泵进口压力减小,流态紊乱,引起水泵汽蚀。
4、正确进行调度,保证水泵在允许汽蚀余量范围内运行。
5、采取措施减小水源的含沙量,避免过流部件被泥沙磨损而使水泵汽蚀性能恶化。
6、注意观测和检査水泵汽蚀部位,如果水泵过流部件已经岀现破坏,应及时进行修补。
7、提高水泵制造工艺,使过流部件表面光洁。
8、其他措施,如向泵内补气、增加诱导轮和采用抗汽蚀材料制造叶轮及泵壳等。
参考资料来源:百度百科-水泵汽蚀
参考资料来源:百度百科-汽蚀现象
一、给水泵发生汽蚀的原因:
1、除氧器水镇水位过低。
2、除氧器内部压力隆低。
3、给水泵再循环门误关或开得过小,给水泵打闷泵。
4、给水泵长时间在较小流量或空负荷下运转。
水泵汽蚀现象:水泵的汽蚀也就是泵体里产生气体了,泵体中有气体的话说会影响到水泵的性能,使水泵达不到相应的效果。
二、给水泵汽蚀危害:
1、汽蚀时传递到危害叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落。
2、发生汽蚀时,还会发出噪声,进而使泵体振动同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。
三、给水泵发生汽蚀处理方法:
索雷碳纳米聚合物材料是专门针对泵叶轮、泵壳等部位气蚀、冲刷现象而研发的一种新型材料,在泵工作中能够有效缓解因气蚀现象对泵本体内部金属材质造成的气蚀破坏,同时该材料具有优异的耐化学腐蚀性能和粘结力,保证缓解气蚀的同时避免了介质的腐蚀和涂层脱落问题。
该材料涂覆到叶轮表面以后,使其表面形成水力光滑表面,超光滑表面涂层表面光洁度是经过抛光后不锈钢的20倍,这种极光滑的表面减少了泵内流体的分层,从而减少泵内部紊流,降低了泵内的容积损失和水力损失,降低了电耗,达到降低水流阻力损失的目的,从而提高水泵的水力效率3%-10%,达到提高泵效的作用。
汽蚀余量是什么?什么是汽蚀现象
离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力pK最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300°C),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
之所以会出现这个问题,是因为水在一定条件下会汽化,这一条件受温度,压强影响,具体影响可以查找一张叫做水的三相图的图片,说的很清楚。
水在进入水泵之前,可能还没有发生汽化,但是此时的压力与温度已经临界汽化条件了,随着进入水泵,到达叶轮之前,静压仍然在下降,一旦下降到汽化条件以下,水就发生了汽化,紧接着到达叶轮就发生了汽蚀。
危害:汽蚀时传递到危害叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体振动;同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。
(1)增加水的热量
由于莱宝真空泵的结冰水的温度升高将导致其泵送能量的显着增加,因此真空泵密封水的热量必须低于对应于排气压力的饱和热量,否则真空将得到改善,并且 真空泵叶轮的蒸汽也将损坏。 因此,水的热量增加以防止气蚀。
(2)普及选型的正确性,使真空泵在保险区域内运行
在选择阶段,应选择真空泵的吸入压力和水的热量,以避免真空泵容易产生气蚀的压力范围,即防止真空泵在海况下处于临界真空或 临界排气压力生产。
(3)装置气蚀屏蔽管
该设备具有带气蚀保护管的真空泵。 空化过程中产生的气泡在压缩过程中破裂。 从内部引入具有高压的不可冷凝气体可以及时补充由于气泡破裂而出现的空间,从而可以大大增加体积。 空化会损坏泵并增加由空化引起的噪音和振动。
一些泵具有气蚀防护罩接口。 例如,在极压下运行时,打开气蚀保护管接口(或将其与苏打水耦合器连接)可以在最大程度地吸入空气压缩机并继续泵送的情况下消除气蚀声覆盖。
(4)带有大气喷射器
空气喷射器的作用是利用大气压和真空泵之间的压力差来产生大气喷射,这将使喷射器中的吸入压力比真空泵低,从而消除真空的极限压力 防止真空泵气蚀,并保护真空泵。 因为已设置空气喷射器以防止真空泵气蚀并覆盖真空泵,所以通常安装了空气喷射器的真空泵要比未安装的真空泵好。
(5)采用低饱和蒸气液作为工作液
将工作流体从原水改为变压器油,由于油的饱和蒸气压较低,其极限真空度将失去较高的提升。 当净化较大的气体并且在某些特殊的运行情况下,真空泵的工作流体还可以与其他液体(例如粘度较低的有机溶剂,如丙醇,乙醇,二甲苯,苯胺和盐酸安非他酮)一起使用。 由工作流体的饱和蒸气压确定。
油环真空泵可在20〜90℃下运行。 因此,在泵送蒸汽等气体时,油温高,蒸汽不易冷凝,所以泵油不易被乳化,从而延长了泵油的使用寿命。 当使用有机溶剂作为工作流体时,请注意电机是否防爆以及真空泵及其密封件被腐蚀的问题。
气蚀的形成原因是由于冲击应力造成的表面疲劳破坏,但液体的化学和电化学作用加速了气蚀的破坏过程.
疲劳破坏:当液体在与固体表面接触处的压力低于它的蒸汽压力时,将在固体表面附近形成气泡.另外,溶解在液体中的气体也可能析出而形成气泡.随后,当气泡流动到液体压力超过气泡压力的地方时,气泡变溃灭,在溃灭瞬时产生极大的冲击力和高温.固体表面经受这种冲击力的多次反复作用,材料发生疲劳脱落,使表面出现小凹坑,进而发展成海绵状.严重的其实可在表面形成大片的凹坑,深度可达20mm.
处理方法,比如引入大气喷射器,使水环泵的入口压力升高,避免出现在极限压力附近就可以,或者通过某些阀门引入新鲜空气。
水环真空泵的极限真空是绝压33hPa,低于33hPa时泵内的水就全部气化,泵内噪音加大,振动加大,就是你所说的空噬。
大气喷射器是用来提高水环泵的极限真空度的,可将极限真空度提高到绝压8hPa,其实也就是可以缓解汽蚀的加剧。
大气喷射器的原理是采用拉法尔喷嘴原理,这个很好找,你自己可以查到。
另外水环泵的汽蚀与水温也有关系,尽量保持泵的工作水温越低越好。