水泵气蚀现象产生的原因?
水泵气蚀现象产生的本质原因是入口压力小于流体输送温度下的饱和蒸气压导致的。
泵进水口处的绝对压力减小到当时水温下的汽蚀压力时,水发生汽化。水在入水口形成气体,从而入水口形成许多小气泡。这些小气泡随水流进高压区时,气泡迅速破裂,周围液体立即填充原气泡空穴,由于气泡破裂时间很短,所以形成高达几百兆帕的水力冲击。
气泡不断地形成与破裂,巨大的水力冲击以每秒钟几万次的频率反复作用在叶轮上,时间一长,就会使叶轮的叶片逐渐因疲劳而剥落;同时,气泡中还夹杂有一些活泼气体(如氧气),对金属的光滑层因电解而逐渐变得粗糙。
金属表面粗糙度被破坏后,更加速了机械剥蚀。另外,气泡形成与破裂的过程中,会使过流部件两端产生温度差异,其冷端与热端形成电偶而产生电位差,从而使金属表面发生电解作用,金属的光滑层因电解而逐渐变得粗糙。
在机械剥蚀、化学腐蚀和电化学的共同作用下,金属表面很快出现蜂窝状的麻点,并逐渐形成空洞而损坏,这种现象称之为汽蚀。
汽蚀现象发生后对泵的影响:
1、泵的性能改变
汽蚀初生时,对水泵外特性并无明显影响。汽蚀发展到一定程度后,水泵的功率、效率、流量和扬程等参数会突然下降。当汽蚀充分发展后,水流的有效过流面积会减小很多,以致引起水流中断,不能工作。
2、引起振动和噪声
气泡破裂时,液体质点互相冲击,产生噪音和机组振动,两者互相激励使泵产生强烈振动,称为汽蚀共振现象。
3、过流部件表面的破坏
汽蚀破坏将大大缩短水泵的寿命,剥蚀和腐蚀严重时,会产生叶片断裂或穿孔等重大事故。
泵在各个行业或领域中有着广泛的应用,是重要输送设备。其运行质量的安全性和稳定性不仅影响着连续生产,同时对能耗的影响也非常大。由于受设计、选材、安装等方面的影响,气蚀问题在相关领域较为普遍,甚至在部分企业表现的还较为严重。
一、给水泵发生汽蚀的原因:
1、除氧器水镇水位过低。
2、除氧器内部压力隆低。
3、给水泵再循环门误关或开得过小,给水泵打闷泵。
4、给水泵长时间在较小流量或空负荷下运转。
水泵汽蚀现象:水泵的汽蚀也就是泵体里产生气体了,泵体中有气体的话说会影响到水泵的性能,使水泵达不到相应的效果。
二、给水泵汽蚀危害:
1、汽蚀时传递到危害叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落。
2、发生汽蚀时,还会发出噪声,进而使泵体振动同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。
三、给水泵发生汽蚀处理方法:
索雷碳纳米聚合物材料是专门针对泵叶轮、泵壳等部位气蚀、冲刷现象而研发的一种新型材料,在泵工作中能够有效缓解因气蚀现象对泵本体内部金属材质造成的气蚀破坏,同时该材料具有优异的耐化学腐蚀性能和粘结力,保证缓解气蚀的同时避免了介质的腐蚀和涂层脱落问题。
该材料涂覆到叶轮表面以后,使其表面形成水力光滑表面,超光滑表面涂层表面光洁度是经过抛光后不锈钢的20倍,这种极光滑的表面减少了泵内流体的分层,从而减少泵内部紊流,降低了泵内的容积损失和水力损失,降低了电耗,达到降低水流阻力损失的目的,从而提高水泵的水力效率3%-10%,达到提高泵效的作用。
汽蚀余量是什么?什么是汽蚀现象
离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力pK最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300°C),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
当泵的入口压力低于该温度下的饱和蒸汽压力时,液体就汽化,同时还有可能有溶解在液体内的气体从液体中逸出,形成大量的小汽泡,这些小汽泡随液体流到叶轮的流道内,叶轮旋转时产生的压力大于饱和蒸汽压时,这些小汽泡重新凝结、馈灭,形成一个空穴。这时周围的液体以极高的速度向这个空穴冲来,液体的质点互相撞击形成局部水利冲击,使局部压力可达数百个大气压。汽泡越大,其凝结馈灭时产生局部水击越大,这种水力冲击的速度很快,频率可达2500次/s,在叶轮表面发生猛烈的撞击,产生机械腐蚀。上述这种液体的汽化、凝结、冲击和对金属剥蚀的综合现象就称为汽蚀。
汽蚀危害
汽泡馈灭时,液体质点互相撞击,会产生噪音,汽蚀严重时会产生振动,流量、扬程、效率会明显下降,甚至会出现“抽空”现象,同时叶轮会因汽蚀剥蚀减薄,甚至叶片和盖板被穿透。
发生汽蚀的基本条件
发生汽蚀的基本条件是叶片入口的最低液流压力低于该温度下液体的饱和蒸汽压力。
有效汽蚀余量是指介质自吸入罐经吸入管道到达泵入口后,所富余的高出汽化压力的那部分能头,这个富余能头习惯上称为有效汽蚀余量,用符号Δha表示。它的数值大小与吸入管路优劣有关,与泵本身无关。当NPSHa数值大时,表示吸入管路设计合理,其值愈大愈好,要强调的是上述都是指泵在输送液体为水且又在常温时。当输送液体为烃时,其汽化压力和烃的化学结构有关,要进行必要的修正。当非常温时,就是输水也要进行饱和蒸汽压的修正。在高原地区因大气压低,也要进行必要的修正。 有效汽蚀余量数值的大小与泵吸入罐的压力、温度、吸入管道的几何安装高度、介质的性质等操作条件有关,与泵本身的结构尺寸无关,因此有效汽蚀余量又称为泵装置的有效汽蚀余量。泵的必需汽蚀余量表示介质从泵入口到叶轮内最低压力点处的全部能量损失,用Δhr 表示。这个值越小,泵越不容易发生汽蚀。
离心泵的有效汽蚀余量与必需汽蚀余量关系的关系
离心泵入口处的富余能量Δha若能克服这个能量损失Δhr还有剩余,即Δha>Δhr,则表示介质流到叶轮最低压力点时,其压力还可高于介质的饱和蒸汽压力而不至于汽化,所以就不会发生汽蚀,反之Δha<Δhr,介质就汽化,泵就会发生汽蚀。
汽蚀是当流道(可以是泵、水轮机、河流、阀门、螺旋桨甚至人和动物的血管等)中的液体(可以是水、油等)局部压力下降至临界压力(一般接近汽化压力)时,液体中气核成长为汽泡,汽泡的聚积、流动、分裂、溃灭过程的总称。
泵在吸入真空度大于允许吸入真空度时,发生汽蚀现象。主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处。例如流量大于设计流量时发生在叶片进口靠近前盖板的叶片正面处(K1)。当叶轮入口处压强下降至被送液体在工作温度下的饱和蒸汽压时,液体将会发生部分汽化,生成的气泡将随液体从低压区进入高压区,在高压区气泡会急剧收缩,凝结,其周围的液体以极高的速度冲向原气泡所占空间,产生高强度的冲击波,冲击叶轮和泵壳,发生噪音引起震动。由于长期受到冲击力反复作用以及液体中微量溶解氧的化学腐蚀作用,叶轮局部表面出现斑痕和裂纹甚至成海绵状损坏。
易产生汽蚀现象的泵类产品是一些离心泵产品,例如立式离心泵或者卧式离心泵。各种水泵产生汽蚀的原因通常有以下几点:
1、在使用安装卧式离心泵时水泵的安装高度太高。离心泵安装高度过高,离心泵的吸水口处的真空度不断增加,导致离心泵腔内压力降得过低,这也就是水泵产生汽蚀的原因之一。
2、 水泵的实际使用工况与泵出厂设计工况点相差太多。当水泵在不在允许工况点附近下运行时,也会在离心泵叶轮下面发生自下而上的涡带。当涡带的中心压力降低到 蒸汽饱和压力 时,此涡带就会变为汽蚀带。当此涡带延生到泵内时,不但能促使与加重水泵叶轮及泵体的汽蚀,甚至还会引起水泵的激烈振动和发出不正常的声音,这也是水泵产 生汽蚀的原因。
3、水泵的入水流量不够。由于管道泵的进口管道弯头太多或者进口管径太小导致进口流量及压力分布不均匀,导致水泵的进口流量不够进水池水流太快产生漩涡也会使水泵的入口将空气吸入,同样也会使水泵入口流量不够、压力分布不均匀,从而导致水泵产生汽蚀的现象。所以水中含气量太大,则 水泵发生汽蚀的现象更容易。
4、水泵使用地区的海拔太高,通常在高海拔地区使用水泵,大气压力特别低,这样会使水泵进口口的压力也相对较低或者水泵输送的水温度太高,出现冒泡的现象,水温较高时,蒸汽饱和压力就会越大,水就越容易汽化,这也是 水泵产生汽蚀的原因。
1.水环真空泵的工作原理
虽然不同类型的 水环真空泵 具有不同的结构,但它们的基本原理基本相同。水环最典型的真空泵类型是单级单作用水环真空泵,具有轴向吸入和排出。单级单作用水环真空泵的结构包括进气口、出气口、泵盖、泵壳、叶轮、挡板、电机等。真空泵工作时水环,电机带动叶轮旋转,使工作室内的水在离心力的作用下形成水环。如果水环合适,成型的水环正好与上侧的轮毂相切,并且正好与下侧的叶轮顶端接触。此时水环,在内表面、轮毂和叶片之间将形成不同尺寸的新月形空间,并且没有连通。当电机带动叶轮旋转时,图中右侧月牙形空间的体积将由小到大,从而降低压力。当与吸气孔连通时,气体将被吸入。然而,当它的体积从大变小时,气体将被压缩,压力将增加。当气体被压缩到一定程度时,它将与排气孔连通,气体将被排出。由于补充水可以连续引入,水环可以基本上保持恒温状态,并且还可以吸收压缩气体产生的热量,所以该过程也可以近似视为等温过程。
水环真空泵运行时的能量传递过程如下:在吸入侧,叶轮将能量传递给水,增加其动能并形成水环,然后水环动能转化为压力能转化并转化为气体,从而实现压缩和排气的过程。水环真空泵的工作原理实际上与其他容积式泵非常相似,只是水环真空泵的能量传递介质是水环。由于饱和蒸汽压的限制,当真空泵使用水作为工作流体时,极限压力只能达到2000 ~ 4000帕。另外,水环真空泵效率低也是水环真空泵最常见的缺陷,一般效率约为35%。然而,水环真空泵具有结构简单、占地面积小、等温压缩和维修方便等优点,因此在各行业得到了广泛的应用。
2.水环真空泵常见故障及处理
2.1进气和出气管道积水
运行中,水环真空泵与蒸汽冷凝器连接,由于水汽分离设备的工作漏洞,管道可能产生水汽积聚流。水环真空泵停止运行后,水蒸气将逐渐冷凝并最终变成积水。一次产生的累积水可能较少,但多次之后,累积水将增加并最终流回真空泵,导致瞬时电压过高和电机燃烧。进气和出气管道积水的维护和处理:首先,在日常工作中,应定期检查水环真空泵,特别注意进气和出气管道有无积水,以便及时清理少量积水。为防止此类故障再次发生,应对水环真空泵的水气分离器进行改造和完善,如采用耐磨性和耐腐蚀性更高的优质钢材,或加大水气分离器的管径,为水气分离提供更多空间,以减少水汽积聚,消除和防止积水故障。
2.2电机异常启动或过热
首先,马达启动异常。“异常”是指噪音过大或启动失败,这可能是由于泵内(叶轮阻力分配板内)有异物、电机供电电压低和电机不相等造成的。在此基础上,检查电机的接线,以避免相位故障或电源故障等问题。如果真空泵长时间不运转,除了对开口盖进行除锈外,还应在里面加入除锈剂。必要时,还应打开端盖,检查其中是否有杂物,并调整分配板与叶轮之间的距离。其次,电机过热。有三个原因。一是真空泵的供水量过大,导致电机负载过大。第二,电机缺相。第三,通风口被堵住了。有鉴于此,请仔细检查真空泵的排气容积。如果涉及的水量较大,应适当调整(减少)供水阀电工应全面检查电机,避免缺相。仔细检查通风孔。如果有任何问题如堵塞,疏通它。
2.3缺乏真空
水环真空泵系统 真空不足有几个主要原因:
(1) 水环工作不稳定。如果进水管结垢,进口电磁阀堵塞,泵的工作水供应将不足,从而使水环不稳定。此时,由于偏离设计工作条件,泵的输出将不可避免地下降,这将导致系统真空下降。响应方法是清除进水管中的污垢,并保持入口电磁阀通畅。
(2)入口止回阀失效。当阀板因结垢、腐蚀或堵塞而无法吸起时,会出现空气错流现象,即空气会从备用泵的入口被吸入工作泵,从而增加泵的功耗,降低系统的真空度。对策是清除阀板的结垢或更换新的。
(3)密封不良。在轴端密封不良或密封失效的情况下,如果外部空气被吸入水环真空泵,系统的真空度会下降,泵的两个进气管的温度会不同。应对措施是检查轴端,确保密封紧密。有时密封水的泄漏会太大。如果判断错误是由于填料压缩力不足造成的,填料的进一步压缩将导致摩擦力增加和轴功率进一步增加。此时,真正的原因可能是工作水量太大,所以压紧填料不能盲目。
2.4真空泵的气蚀
在 真空泵 运行过程中,最常见的故障是叶轮转子的损坏,这主要是由于叶片表面存在许多麻点和孔洞。在严重情况下,会发生叶片断裂,导致设备非计划停机,影响生产的正常运行。叶轮叶片这些故障的主要原因是气蚀。气蚀的主要原因是真空泵运行过程中,负压区和正压区之间有交替变化,这是由其结构和工作原理决定的。因此,为了减少甚至避免空化的危害,有必要对其结构进行改进。此外,可根据其工作原理采取一些措施。为了防止水环真空泵在气蚀状态下工作,可以采取两种措施:一是改进管道设备,如增加空气喷射器和气蚀保护管等。二是根据空化的产生原理采取相应的改进措施,如降低工作流体的温度、更换工作流体和选择合适的类型。
2.5阀板破裂
水环阀板安装在真空泵的两个排气口分配器的旁边。其功能是消除真空泵运行过程中可能出现的过压缩或欠压缩,并防止泵的功耗增加和效率降低。阀板可以沿着分配器和挡板之间的轴向小距离移动。当泵内压缩气体的压力小于泵出口处的压力时,阀板向叶轮移动并紧贴分配器,以防止空气在泵出口处形成小空腔进入,并确保气体继续被压缩当压缩气体的压力大于泵出口压力时,气体通过排气口冲刷阀板,使阀板的上部以一定角度摆动,以利于气体的顺利排出。通过这种方式,阀板的下部通常紧密地连接到分配器上,而上部以一定角度展开并扭曲成“S”形。长期扭曲导致应力集中在阀板的中部,导致疲劳损坏和中部断裂。阀板破裂后,将出现以下影响:
(1)轴承过热。当阀板破裂时,叶轮两侧的压力将不平衡,转子将产生轴向力,这将增加滚珠轴承的负荷。长期运行会导致轴承温度升高。两个阀板断裂时,断裂位置不完全相同,叶轮两侧的压力也略有不平衡,轴向力比一个阀板断裂时减小,轴承温度降低,但仍较高。
(2)当轴功率上升时,阀板无法按照正确的状态实现分配器的适当覆盖,部分废气将再次回流到工作室,反复压缩和排放,造成能量损失,增加电机负载。
(3)真空度下降。当两侧的阀板破裂时,系统真空将急剧下降。阀板损坏后,必须及时更换。如果一个阀板损坏后不及时更换,另一个阀板的使用寿命将大大缩短,并且在短时间内就会发生断裂。
在实际生产中,为了减少各种故障对生产的影响,除采取上述各种措施外,还应加强在线检查,并采取相应措施及时处理问题。泵停止运行后,应及时清理泵体内的工作流体,防止泵体结垢影响泵的性能和后续使用。