建材秒知道
登录
建材号 > 水泵 > 正文

水泵特性曲线的确定

饱满的音响
爱听歌的宝贝
2022-12-29 07:05:58

水泵特性曲线的确定

最佳答案
酷炫的野狼
俊逸的棉花糖
2026-01-31 01:55:08

水泵的特性曲线是根据水泵在不同流量下对应的出口压力绘制的一组曲线,这里有两点:

1、流量不同出口压力也不同;

2、特性曲线是实际测试得到的,不是根据参数得到的。

你选用的水泵出厂资料里有特性曲线,你可以查看。

最新回答
害怕的天空
高兴的黑裤
2026-01-31 01:55:08

通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。

特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。

微笑的小甜瓜
欣慰的海燕
2026-01-31 01:55:08
1、水泵需要表达压力、扬程、效率等性能参数。水泵的性能参数通常用曲线表示,这个表示水泵性能参数关系的图表就叫水泵的性能曲线。

2、水泵各性能参数不是孤立的、静止的,而是相互联系和相互制约的。对于特定的水泵,这种联系和制约具有一定的规律性。它们之间的变化规律,都反映在水泵的性能曲线上。所以水泵的特性曲线是选择水泵的依据。

唠叨的胡萝卜
冷傲的黑夜
2026-01-31 01:55:08

离心泵的特性曲线图如下

水泵的性能参数如流量Q 扬程H 轴功率N 转速n效率η之间存在的一定的关系。他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。比转速在80~150之间的离心泵具有平坦的性能曲线。比转数在150以上的离心泵具有陡降性能曲线。一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

扩展资料

工作原理

离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须灌满水形成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。

水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故!

参考资料:百度百科-管道离心泵

魁梧的灯泡
友好的香菇
2026-01-31 01:55:08

1、Q-H曲线

Q-H曲线表示泵的流量Q和扬程H的关系。离心泵的扬程在较大流量范围内是随流量增大而减小的。不同型号的离心泵,Q-H曲线的形状有所不同。如有的曲线较平坦,适用于扬程变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于扬程变化范围大而不允许流量变化太大的场合。

2、Q-P/Q-η曲线

Q-P/Q-η曲线表示泵的流量Q和轴功率P及流量Q和效率η的关系,P随Q的增大而增大,显然,当Q=0时,泵轴消耗的功率最小。因此,启动较大流量的离心泵时,为了减小启动功率,应将出口阀关闭。开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点。泵在该点所对应的扬程和流量下操作,其效率最高,所以该点为离心泵的设计点。

3、汽蚀余量(NPSH)曲线

离心泵的汽蚀余量(NPSH)与流量、扬程无直接关系。但是同一台泵,当流量增加,扬程降低时,泵入口压力损失变大,汽蚀余量(NPSH)上升,容易产生汽蚀。

4、转速是泵轴单位时间的转数,用符号n表示,单位是r/min。

  在变频拖动的供水设备中,频率的高低决定了电机的转速,也就是水泵的转速。对于同一台水泵来说,可以运用水泵的比例定律来计算在不同转速下的扬程,流量,功率。

比例定律的定义:同一台水泵,当叶轮直径不变,而改变转速时,其性能的变化规律。

流量与转速成一次方关系:Q1/Q2 = n1/n2

扬程与转速成二次方关系:H1/H2 = ( n1/n2 )²

电机轴功率与转速成三次方关系:P1/P2 = ( n1/n2 )³

电机转速公式:n=60f/p,其中,n为电机同步转速,f为供电频率,p为电机极对数,可知电机供电频率f与转速成正比。这样频率与流量、扬程及电机轴功率也有上述的比例关系。

5、离心泵的转速对特性曲线的影响

离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为(比例定律):

当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。

感性的自行车
愉快的茉莉
2026-01-31 01:55:08

指泵在一定转速下,运转时扬程、功率、效率、流量等重要性能参数值以及它们间的相互关系常用性能曲线图表示。

具体介绍:

1、绘制性能曲线可为用户提供泵的高效工作区,一般设定为最佳工况点附近的区域为最经济的区域;

2、离心泵的特性曲线分为流量与扬程曲线、流量与功率曲线、流量与效率曲线、压差与流量曲线、压差与功率曲线,压差与效率曲线这六条曲线;

3、在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

相关介绍:

特性曲线的绘制是通过感光测定完成的。感光胶片的感光测定程序为:在专门设计的感光仪上,对某种感光胶片进行一系列按几何级数增加的曝光量进行曝光;按标准要求经过显影、定影等处理后,即可得到一张光楔片(或称梯尺)。

将光楔片放在密度计上测定各梯级的密度,便可获得曝光量与密度之间相对应的一组数据;然后,以密度值(D)为纵坐标,以曝光量的对数值(IgH)为横坐标,绘制成的曲线。

糊涂的画笔
无奈的蜡烛
2026-01-31 01:55:08
一、离心泵的特性曲线定义

当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方 法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。

在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。

二、影响离心泵特性曲线的因素

离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。

1、叶轮出口直径对性能曲线的影响

在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。

2、转速与性能曲线的关系

同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:

Q1/Q2 = n1/n2

H1/H2 = (n1/n2)2

Nl/N2 = (n1/n2)2

三、理论特性曲线的定性分析

1、理论扬程特性曲线的定性分析

由 HT =中,将C2u = u2 - C2rctgβ2 代入,可得:

HT =(u2 - C2rctgβ2)

叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =

式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。

所以:HT =(u2 - ctgβ2)

式中β2、F2均为常数。当水泵转速一定时,u2也为常数。

故:HT = A–B QT 是一个直线方程。其斜率是用β2来反映的:

β2>90º时,HT = A + B QT,后弯式,上倾直线,扬程随流量的增加而减小。

β2= 90º时,径向式,是一条水平直线,扬程不随理论流量的变化。

β2<90º时,HT = A–B QT,前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。

四、实测特性曲线的讨论

它反映泵的基本性能的变化规律,可做为选泵和用泵的依据。各种型号离心泵的特性曲线不同,但都有共同的变化趋势。

1、每一个Q都对应于一定的H,N,η,Hs。

2、Q-H曲线是一条不规则的下倾曲线。

(1)设计工况点。最高效率点,水泵在该点工作效率最高。 

(2)水泵高效工作段。是水泵效率较高的工作范围,最高效率点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效段内。

3、Q—N曲线

N随着Q的增大而增大,闭闸启动:水泵启动前,压水管路闸阀是全闭的,待电动机运转正常后,压力表读数达到预定数值时,再逐步打开闸阀,使水泵工作正常运行。

Q—N曲线,指的是水或某种特定液体时的轴功率与流量之间的关系,抽升的液体容重不同时,要换算。

4、Q—Hs曲线

该曲线上各点的纵坐标,表示水泵在相应流量下工作时,水泵做允许的最大限度的吸上真空高度值。不表示水泵在某点(Q,H)点工作的实际吸水真空值。实际的Hs必须小于Q—Hs曲线上的相应值。

5、被输送液体的重力密度和粘度等对特性曲线的影响。所输送的液体粘度愈大,泵内的能量损失愈大,水泵的扬程和流量都要减小,效率要下降,而轴功率增大。因此,如果被输送液体的粘度与试验条件不符时,则Q-H,Q-N,Q-η,Q-Hs要进行换算后才能使用,不能直接套用。

清脆的绿茶
大方的小懒猪
2026-01-31 01:55:08
"Rho=1000"表示此性能曲线按照输送介质密度为p=1000 kg/m3进行绘制,如果输送介质的密度不同于1000kg/m3,出口压力与密度成正比,如果输送液体密度大于1000kg/m3,必须使用大规格电机。

NR:D2A/D21 这个方框表示水泵叶轮切削的编号,图中展现了4个规格叶轮名义直径的:水量——扬程图。

天真的荷花
天真的电脑
2026-01-31 01:55:08

离心泵性能曲线是泵的设计意图与实际试验作出的,通常用迪卡尔第一座标系绘制而成。其横座标表示泵的流量,纵座标表示泵的扬程,特定离心泵的流量与扬程曲线是条向下弯曲线,表示其泵扬程减小而其流量增加。

在这个座标中,还有一个功率曲线,其是一根向上的曲线,表示泵的功率随着流量增加而功率增加,扬程减小而功率下降。还有一根效率曲线,其是一根中间高,两边低的曲线,说明其效率中间部分最高,两边部分效率下降。因此,选择泵的时候,要使泵的流量与扬程应落在效率曲线最高点的附件。

扩展资料

离心泵的基本构造是由八部分组成的,分别是:叶轮,泵体,泵盖,挡水圈,泵轴,轴承,密封环,填料函,轴向力平衡装置。

1、 叶轮是离心泵的核心部分,它转速高输出力大。

2、 泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。

3、 泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件

4、 密封环又称减漏环。

5、 填料函主要由填料,不让泵内的水流流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管注水到水封圈内使填料冷却。

6、轴向力平衡装置,在离心泵运行过程中,由于液体是在低压下进入叶轮,而在高压下流出,使叶轮两侧所受压力不等,产生了指向入口方向的轴向推力,会引起转子发生轴向窜动,产生磨损和振动,因此应设置轴向推力轴承,以便平衡轴向力。

参考资料来源:百度百科-水泵性能曲线

参考资料来源:百度百科-离心泵

靓丽的小土豆
酷炫的早晨
2026-01-31 01:55:08
k3v泵的流量压力曲线

为了便于后面的理解,先把泵上的各油口的英文代号解释一下,一台液压泵都有S口,T口,P口。

S口=泵的进油口(低压油口)

T口=泵的泄油口。

P口=压力油口,(高压油口)。K3V泵是三连泵,(或是四连泵/五连泵,K3VH泵的H代表叶轮泵,在泵的中间体内有一台叶轮泵)。所以有P1,P2两个高压油口。

K3V系列变量柱塞泵,变量柱塞泵是泵在某一恒定转速下,泵所排出的压力油的流量是变化的,泵排出的压力油的流量多与少的改变是由泵内斜盘摆动角度变化所决定的。斜盘摆动角度从零度倾斜到最大角度15°或从15°度角变化到小于15°角是由泵壳体内有一个液压油缸带动斜盘在泵体内前后移动,能带动斜盘移动的液压油缸,就是泵上一个关键原件,即“伺服变量活塞”。

伺服活塞在泵壳内左右移动是与挖机上的油缸杆的伸出或缩回原理一致的,能改变伺服活塞左右移动的压力油源来两面方面,这二个方面的:一是从取自泵的P口。是泵本身所产的压力油,经过泵壳体内的油道提供给(内分流)泵上的调节器,(南方也叫:提升器)。调节器内的伺服阀控制这股压力油的流量及压力,分配给流向伺服变量活塞的大端,来控制伺服变量活塞左右移动量,内控压力油来自泵的P口泵本身所产生的压力油提供给变量机构的变量方式,名称叫做“自控变量”。

这二方面的二是,外来的压力油提供给调节器的油流是由泵上的齿轮泵提供的。大家把这个齿轮泵也叫做伺服泵,齿轮泵所排出的压力油经外置胶管联接到泵上的比例减压阀进入调节器内(外分流)。

外分流的压力油如直接进入到调节器内的经伺服阀分配给伺服变量活塞,这种变量方式叫做外控变量。

外分流的压力油经过比例减压阀的减压后,进入调节器内,做用在补偿器活塞的小端上,(补偿器活塞也是三阶梯阀,图号621)。这种变量方式叫做电气控制变量。

综上所述;K3V泵变量方式有,内控+外控+电气三种变量方式。

在主泵工作时,从泵P口内分流的压力油经泵壳体内的油道直接作用在伺服变量活塞小端面上,这道压力油只要是主泵工作,它始终是做用在伺服变量活塞小端上。如果变量活塞大端油道是泄油状态时,做用在伺服变量活塞小端在压力油,使伺服变量活塞向大端方向移动,此时,泵的斜盘倾角最大(15°)。

内分流的压力油通过调节器上的伺服机构分配后,流向变量活塞的大端面上,这时,如果同样压差的压力油同时做用到伺服变量活塞大,小端面上。伺服变量活塞大小端面都受到同等压力的油压作用时,因变量活塞大小端面积差,使伺服变量活塞向小端移动,斜盘回到零位。

K3V泵变量特性曲线是压力上升,流量必须减小,压力上升到最高数值时,泵的流量几乎是最少,当泵压力下降,泵的流量逐步上升,当泵压力降到50bar时,泵的流量最大,这些特性曲线变化,是变量活塞大端面受到多大的压力油作用力结果,也是调节器内的伺服阀分配给定压力值变化的结果,那么,伺服阀是根什么来分配压力油呢?

调节器内的伺服阀有2个感知反馈机构,在这里我用最简单方法讲述一下:

一是:从挖掘机上多路阀(分配器)上,有2根胶管联接到泵的前后两个调节器上(Pi反馈的压力油)。反馈压力油作用在伺服阀杆的一端上即(第一感知)

第二感知,变量调节器上有一个“拔叉”。这个拨叉也叫做回馈杆(图号611)。回馈杆的上部有两个操纵杆,图(号位612,613)操纵一个阀杆(芯),这个阀杆(图号652)左右移动,阀杆上的油道控制边处与阀杆外面的阀套(图号622)油孔对应有三种状态。我讲到此时真不知该怎么样讲,不知友人能看董否?这三种状态分别是全遮盖,左开口,右开口。这三种状态就是阀套622是固定的,阀杆在阀套孔中移动,是在中位还是向左移动及向右移动,

全遮盖时,阀杆在中位,封闭伺服活塞大端的压力油,使斜盘固定在某一固定角度上。

右开口,阀杆右左移动,压力油经阀杆控制边流向伺服活塞的大端,使斜盘向小摆角倾回。

左开口,伺服变量活塞大端压力油排出,伺服活塞小端在压力油的做用下,带动斜盘向最大摆角倾斜,使泵达到最大排量。

今天就讲到这里,下讲泵上的比例减压阀的作用。

比例减压阀其作用是按电信号指令的大小将A口压力降低到希望值并能保持恒定,即能降低从P口到A口的压力,同时能限制从A口到T口的压力值

比例减压阀在K3V泵上的作用有二,一是在发动机在某一个恒定转数下,对泵的排量精确控制。同时控制P1与P2泵两台调节器压力与流量的平衡。

二是在发动机在最低转速状态,全部操作伺服阀都在中位时,挖掘机的发动机上的转数传感器把发动机的转动数据提供给电脑,电脑根据所得到的数据给定比例减压阀一个固定的电流值(电信号指令)。外控压力油经过比例减压阀P口做用在调节器内的补偿器活塞(图号621)的小端面上,使补偿器活塞向右移动来推动623补偿器连杆也向右移动,达到右开口状态,另一路外控压力油通过比例减压阀上的两个单向阀后,进入调节器内的孔道,这股外控压力油经阀杆控制边流向伺服活塞的大端,伺服变量活塞在压力油的作用下向小端方向移动,使斜盘的倾角最小(零度),来来减少发动机的负荷。这样就可防止不必要的能源消耗。

发动机在滞速状态下,电脑给定的比例减压阀的电流值最大(800MA),外控压力油进入比例减压阀P口(45bar),经过比例阀的A口液阻变值后,做用在621补偿器活塞的小端上压力值是(38 bar)。

发动机在最高转数状态下,电脑给定的比例减压阀的电流值最小(200MA),外控压力油进入比例减压阀P口(45bar),经过比例阀的A口液阻变值后,做用在621补偿器活塞的小端上压力值是(2,5 bar。)

比例减压阀动态检测方法:

在此阀的阀体上,有一个19*19的外六角螺堵,松开此螺堵后,在此位置上安装一个测压接头,再接上压力表,在发动机转数变化,压力显示也跟随变化。

另一种测试方法采用万能表来测量比例减压阀的电流值,只能测一根线。

我现回答您的问题:压力油在管道内流动,遇到小孔(即是一个阻尼孔)就产生一个压力差,压力差的变化比,要看变径差及细小孔道的孔长,这就是液压的一个很重要理论《液阻》。、广义的液阻:凡是能局部改变液流的通流面积使液流产生压力损失(阻力特性)或在压力差一定情况下,分配调节流量(控制特性)的液压阀口以及类似结构,如薄壁小孔、短孔、细长孔、缝隙等,都称之为液阻。各种液阻都应满足流量压力方程,液阻分为:1液压桥路(液压半桥)液阻2动态阻尼液阻。3动压反馈液阻。4各种控制阀口的液阻。5一般固定阀口。6一般可变阀口等。

液阻又可按性质区分为:1固定液阻。2可调液阻。3可控液阻。

液阻的应用场合,可以讲液压元件与系统的方方面面都要用到。就是辟开各种控制阀口,对常规狭义的液阻,情况也是一样的。各种阀、泵、马达、液压缸里都有,例如液压缸的缓冲机构中最要紧的就是阻尼孔。现今的变量泵中也是到处可以看到液阻。

以上这两种,其流量公式就是传统的:流量q=系数X阻尼孔面积X阻尼孔前后压差的根方。