建材秒知道
登录
建材号 > 水泵 > 正文

泵体6N6A什么意思

贪玩的鞋子
温柔的音响
2022-12-29 03:21:42

泵体6N6A什么意思?

最佳答案
哭泣的大碗
俊逸的小甜瓜
2026-02-01 05:36:11

凝结水泵A6N6是一种冷凝泵,包含泵体、泵盖、叶轮及诱导轮,叶轮上装有密封环;泵体、泵盖上装有密封环,转子部件的轴上依次装入机械密封、叶轮、诱导轮,用诱导轮螺母锁紧,泵体、泵盖由螺栓紧固,泵盖与轴承悬架由螺栓紧固,转子组件的左端通过导轴承设备在泵体上;转子组件的右端支撑在轴承悬架上并外伸与联轴器联接,联轴器与电机相接,所述的诱导轮是由两组螺旋形的空间立体型面构成,圆周方向均布的三个叶片与前、后盖板连接成一体组成叶轮。因为加大了诱导轮叶片的曲面弧度,并具有超大的泵吸进口,减小了疏水泵的必需汽蚀余量,行进了泵的抗汽蚀功用,然后确保了疏水泵在苛刻作业环境中运用的牢靠性,延伸疏水泵的运用寿数,下降本钱,行进了作业功率。

最新回答
高挑的胡萝卜
寒冷的小蝴蝶
2026-02-01 05:36:11

凝结水泵空气管的作用:

使泵在启动与运行时,顺此空气管抽出水中分离出的空气,以及经过某一不严密的地方偶尔漏入泵内的空气,以免影响水泵运行。

水泵运行期间,必须使水泵与凝汽器之间的这一空气管的阀门保持在稍微开启的状态。

扩展资料:

凝结水泵组装注意事项:

1、重新核实各个转子部件的尺寸,轴的弯曲,确认无误方可开始回装。(弯曲检查应在上一工序中进行,同时如果各级叶轮是由一个并帽一起锁紧的,还应将叶轮组装,进行转子晃度检查)

2、组装过程中应按照标记、序号依次组装,不得强行装配。对标记不清的部件要确认清楚方可装复。

3、测量轴的总串动量,计算好提升量。检查推力瓦的平行度、厚度,推力头在轴上的晃度,调整好导瓦的径向间隙。(推力瓦检查和推力头晃度瓢偏检查应在部件测量检查中进行,如果转子底部轴向有保护顶丝的,还应将顶丝定位。如果有诱导轮,转子轴向定位后垂直吊起,检查诱导轮径向间隙)

4、电机支架找好水平,再调整电机与泵的张口、外圆。保证轴系在一条直线上。

参考资料来源:百度百科-凝结水泵

单纯的白云
潇洒的大炮
2026-02-01 05:36:11
T-72主战坦克

前苏联在1961年开始生产T-62主战坦克,以后研制了T-64主战坦克,由于T-64包含了前苏联太多的先进坦克技术,制造的单价在70年代就达到了300万美元一辆,再加上T-64坦克在很长时间内扮演的是一个技术验证的角色,决定这个坦克只能在苏联使用,不能用于出口创汇,事实也是这样,所有的T-64车族全部在苏军精锐一线坦克部队服役,没有一辆出口。为了可以大量的装备苏军,并且降低单车成本,苏联利用T-64坦克的某些技术,经T-70试验车,发展成T-72主战坦克。

该坦克1971年投产,1973年大量装备部队,1978年将T-72G的全套生产许可转让南斯拉夫.从1979年起,还装备波兰、捷克斯洛伐克及罗马尼亚等华约国部队,同时向叙利亚、利比亚、伊拉克、埃塞俄比亚、阿尔及利亚和印度等国出口。

该坦克于1977年10月第一次向法国国防部长率领的代表团公开展出,接着又在同年11月的莫斯科红场检阅中公诸于众。1982年黎巴嫩战争期间,参加战斗的T-72坦克曾被以色列的制式105mm坦克炮发射的尾翼稳定脱壳穿甲弹、直升机发射的陶式反坦克导弹、155和203mm火炮发射的改进型常规炮弹以及美制集束炸弹的反坦克子弹击毁了多辆。

结构特点

一、总体布置

该坦克的车体用钢板焊接制成,车内分为前前驾驶舱,中部战斗舱,后部动力舱3部分。驾驶椅在车体前部中央位置,驾驶员有1个位于车体顶装甲板上的舱口盖,可从车内开关舱盖。驾驶员开窗驾驶时,首先必须将火炮向一侧转动一定角度并加以固定,关窗驾驶时,昼间借助潜望镜、夜间借助红外或微光潜望镜观察。

车体前上装甲板上有1个“V”型防浪板,并装有前灯,型号为ФГ-125。驾驶员两侧的车首空间存放可防弹的燃油箱。车体前下甲板上装有推土铲,平时有防护作用。车体两侧翼子板上有燃油箱和工具箱,车体后部还可以安装两个各200L柴油的附加油桶。

炮塔系铸造结构,呈半球形,位于车体中部上方,炮塔内有车长和炮长2名乘员。车长在炮塔内右侧,炮长在左侧,他们各有1个炮塔舱口盖。车长指挥塔采取双层活动座圈结构,可相对炮塔作同步反向旋转。战斗舱中装有转盘式自动装弹机,取消了装填手,战斗舱的布置围绕自动装弹机安排。整个战斗部分连同车体顶甲板前倾1°30′,因此加大了火炮向前时的俯角,可达-6°,而且火炮转向后方时俯角自动抬高3°,避免与后部突起部相碰。

二、武器系统

1.主要武器该坦克的主要武器是1门2A46式短后坐距离的125mm滑膛坦克炮,身管长是口径的48倍,由身管、炮尾、摇架、驻退机、复进机、热护套和抽烟装置等部件组成。火炮相对于炮塔的俯仰角为-4.5°~+14.5°,由于炮塔座圈向前倾斜1.5°,所以,火炮向前时实际俯仰角为-6°~+13°,火炮向后时实际俯仰角为-3°~+16°。热护套用轻合金薄板制成,共4节,抽气装置在炮管中段偏向炮口位置。

2.弹药125mm滑膛炮可以发射3种分装式炮弹:БР11式或БМ12式尾翼稳定脱壳穿甲弹、ЗБК14М式尾翼稳定破甲弹和ОФ19式尾翼稳定榴弹。穿甲弹最大有效射程为2120m,初速 1800m/s,两种穿甲弹的穿甲厚度分别为300mm/1000m和400mm/1000m破甲弹初速为900m/s,最大直射距离为4000m,破甲厚度为475mm/1000m;榴弹初速为850m/s,最大有效射程9400m。该坦克携有39发炮弹,其配比一般为尾翼稳定脱壳穿甲弹12发、尾翼稳定榴弹21发和尾翼稳定破甲弹6发。分装式炮弹采用半可燃药筒;自动装弹机的旋转输弹机中存放22发炮弹,上层为药筒,下层是弹丸;炮塔吊篮后的中组弹架存放9发炮弹;车体前部驾驶员右边的小室存放4发炮弹,旋转底板上立放3发、卧放1发炮弹。

3.自动装弹机该装弹机由旋转式输弹机、链式提升机、链式推弹机、火炮闭锁器、自动抛壳机、控制盒和操纵台等部件组成。旋转式输弹机中的炮弹按弹丸和装药分别存放在输弹机的下层和上层,呈圆形辐射状盎,由驱动电机将所需弹种转至提升机提升位置,提升机提升弹匣内的弹丸和装药至火炮正后方位置,推弹机分别将弹丸和装药推入膛内,记忆盒记忆所储放弹种。在装填之前,火炮闭锁器将火炮固定在4°30′仰角位置上,以便进行准确装填。自动抛壳机可将非可燃的短柱形金属药筒底壳自动抛向炮塔外。该炮射速为8发/min。自动装弹机出现故障时,可采取半自动方式装填,其过程包括人工选弹、人工提升和人工推弹入膛。

4.火控系统

车长指挥塔前面有1具TKH-3双目昼夜合一瞄准镜,它的红外探照灯装在指挥塔上。车长瞄准镜两旁各有1具潜望镜,指挥塔舱盖上有2个朝向左后和右后方向观察的观察镜。

炮长舱盖上有1个潜渡时装潜渡筒的通气孔和2个观察潜望镜,舱盖左前位置有1具昼夜合一的周视瞄准镜,红外探照灯在瞄准镜左前方。炮长瞄准镜通过四连杆与火炮同步动作,型号为ТПН-2,左侧是夜间使用的ТПД1-49-23红外瞄准镜,其目镜高度与ТПД-2齐平。

早期的T-72坦克装有合像式光学测距仪,基线长为1.5m,放大倍率为8×,测距范围为1000~4000m。ТПД-2瞄准镜右目镜系光学测距仪的目镜,测距时用炮长主瞄准镜粗瞄目标,使目标置于视场中心区,目标图像位于分像线上下,距离不符时目标垂直轮廓线在左右错位,转动操纵台使垂直线在分像线上对齐,此时距离指示线对着的数字即表示目标的实际距离。改进型T-72坦克在炮长舱盖前下方装有激光测距仪。125mm火炮配有双向稳定器。

5.辅助武器在主要武器的右侧,并列安装1挺7.62mmПКТ式机枪,配有250发待发射弹。车长指挥塔上装有1挺新设计的HCBT式12.7mm机枪,它只能由车长将上身露出炮塔进行操作,对地面目标射击的最大瞄准距离为2000m,对空射击时的最大瞄准距离为1500m。

三、推进系统

1.发动机

该坦克装有1台B-46型4冲程12V60°水冷多种燃料机械增压发动机,结构与B-54发动机基本相同,外形尺寸变化不大。由于该发动机采用机械增压,标定功率比B-54发动机提高50%,达到574kW(780马力)。为了安装增压器,取消了原发动机曲轴的第八主轴承,使发动机长度与B-54发动机基本相同。该发动机在车内横向布置,可以燃用柴油、煤油和辛烷值为68~78号的汽油以及上述燃油的混合物。燃油供给量因燃料品种不同有差异,通过转动转轮、调节供油杆进行控制。转轮上标有Д、К和Б3个字母,分别代表柴油、煤油和汽油供给位置,使用混合燃料时,需要将转轮转到燃用重油位置上。

2.传动装置该坦克采用行星式机械传动装置,由传动箱、双侧变速箱和侧传动装置及手动液压操纵装置组成。传动箱连接发动机、变速箱以及风扇、起动电机和压气机等装置。在车体两侧各有1个结构相同、用手动液压操纵的3自由度行星式机械变速箱,它有4个行星排、6个操纵件、7个前进档、1个倒档,除变速作用外,还具有转向、制动和切断动力等功能。直线行驶时,两侧变速箱同时换入相同排档,通过刚性联动轴的左右两个操纵阀阀芯保证两侧变速箱同步操作。 一档或倒档转向时,转向侧的变速箱制动,高速侧挂一或倒档;二至七档转向时,转向侧的变速箱档位比高速侧的变速箱低一档,外侧履带保持原速。传动装置中无主离合器,但具有主离合器功能,需要切断动力时,只要操纵油路使换档制动器和离合器油缸与回油道相连通即可。侧传动装置是单级同轴式行星减速器,太阳齿轮为输入件,齿圈固定、框架输出。

3.冷却系统冷却系统由离心式冷却风扇、油散热器和水散热器等部件组成,采用了高温冷却技术。为消除水蒸汽对散热效果的不良影响,系统中增加了1个膨胀水箱,收集气缸排和水散热器中的蒸汽,进行冷凝,返回水泵,部分水蒸汽经调压活门排出水箱。

4.行动装置

该坦克采用高强度扭杆悬挂装置,车体每侧有6个双轮缘挂胶负重轮、3个托带轮、1个前置诱导轮、1个后置主动轮,在第一、二和六负重轮位置处装有液压减振器。

履带为单销式,销耳挂胶,宽580mm,节距为137mm。由于使用了难溶于水的ЯНЗ-2润滑脂,行动装置的使用寿命得到提高。

5.潜渡设备

潜渡设备由进气管、密封盖、排气阀、导航仪、排水泵等件组成。

进气管分3节,按直径大小依次套装在一起,平时装在炮塔后部或右后部位,使用时盖可防止水大量进入车内;排气阀可将发动机废气顺利排出车外;排水泵可排除进入车体内的积水;导航仪确保潜渡时不迷失航向。

四、防护系统

1.装甲护防

该坦克车体除在非重点部位采用均质装甲外,在车体前上部分采用了复合装甲。

前上装甲厚200mm,由3层组成,外层和内层分别为80mm和20mm的均质钢板,中间层是100mm厚的非金属材料,与水平面的夹角为22°。炮塔为铸钢件,各部位厚度不等,炮塔正面位置最厚。

2.张开式屏蔽板

早期T-72坦克车体前侧部翼子板外缘各装有4块张开式屏蔽板,第一块较小,其余3块稍大,由较厚的金属板和橡胶板组成,以铰链方式装在翼子板上。铰链上有弹簧,可将屏蔽板向外张开,与车体纵轴线成70~80°夹角。坦克通过时,车旁障碍可以将屏蔽板压至与车体平行,不影响坦克通过性;平时,屏蔽板用带钩的链条固定在与车体平行的状态。后期的T-72坦克装有整体式侧初板。张开式屏蔽板和整体式侧裙板都具有防破甲弹的屏蔽作用。

3.防辐射衬层该坦克的驾驶舱和战斗舱四壁装有含铅有机材料制成的衬层,厚度为20~30mm,具有防辐射和防快中子流的能力,同时还能减弱内层装甲破片飞溅造成的二次杀伤效应。

4.三防装置

三防装置为集体防护式,由探测装置、控制装置、增压风扇、滤毒罐、关闭机构等部年组

成,可对进入车体的空气进行过滤,车上滤毒器可对车内的放射性法埃及化学毒剂进行消毒。

5.其他措施

车体前下甲板为均质装甲,与水平面夹角为30°,其上装有推土铲,驾驶员可以从车内操纵推土铲进行构筑工事作业。不使用时,将推土铲收起,置于前下甲板外侧,可增加前下甲板的防护力。在车体前下甲板上还备有安装KMT-4G型扫雷器用的螺栓孔,安装前需要收起推土铲。苏军为每个坦克连配备了3具KMT-4型扫雷器。

6.附加装甲

该坦克能安装类似于T-80和T-64坦克一样的反应式爆炸装甲。 7.烟幕装置

早期T-72坦克装有与T-62坦克相同的热烟幕施放装置。施放时,驾驶员打开仪表开关接通油路,柴油经喷油雾化器喷入发动机排气管的废气流中,柴油受热蒸妇生成的蒸汽与废气混合后排出车外,过饱和状态柴油蒸汽受冷迅速凝结形成微粒白色烟雾。后期生产的T-72坦克除装有热烟幕施放装置外,还装有烟幕弹发射器,发射器数量随车型不同而变化,例如T-72M1型制式坦克装有12具烟幕弹发射器,炮塔右边5具,左边7具;1986年型T-72M1坦克装有8具烟幕弹发射器。

8.灭火装置该坦克上装有自动灭火装置,当探测器感受到存在火灾信号时该装置能自动控制灭火瓶喷出灭火剂进行灭火。

型号演变和变型车

自T-72坦克生产以来主要型号变化为:

1.T-72坦克

该坦克系T-72的最初车型,装2A26式125mm火炮,光学测距仪,未装侧裙板,炮长红外探照灯装在火炮左边。

2.T-72A坦克

该坦克车体侧面装有张开式屏蔽板,探照灯装在2A26式火炮右边。

3.T-72Б46坦克

该坦克装有2A46式125mm火炮,探照灯装在火炮右边,其他与T-72A相同。

4.T-72Б(M)坦克

该坦克前装甲加厚,其他与T-72Б46相同。

5.T-72Г坦克(早期的)

该坦克装有激光测距仪。

6.T-72Г坦克(标准的)

该坦克装有橡胶侧裙板,其他与早期的T-72Г相同。

7.T-72Г坦克(最后的)

坦克装有灭火系统和12具烟幕弹发射器,其他与标准的T-72Г相同。

8.T-72M坦克

该坦克加强了前装甲,装有灭火系统和激光测距仪,未装烟幕弹发射器。

9.T-72M1坦克(早期的)

坦克有附加的前上装甲,其他与T-72M相同。

10.T-72M1坦克(标准的)

该坦克装有12具烟幕弹发射器,其他与早期的T-72M1相同。该坦克装有12具烟幕弹发射器,其他与早期的T-72M1相同。

11.T-72M1坦克(1984年式)

该坦克无灭火系统,其他与标准的T-72M1相同。

12.T-72M1坦克(1986年式)

该坦克装有8具烟幕弹发射器,其他与1984年式相同。

13.T-74坦克

该坦克是T-72的改进型,主要变化包括整体式侧裙板、烟幕弹发射器、动力舱上方有附加装甲板。

14.T-72K坦克

此系指挥型坦克,车内有多台通信设备。

15.БРЗМ-1装甲抢救修理车

此系用T-72坦克论盘发展的变型车,车体左前部装有液压绞盘,缔造盘起吊能力为12t;25t主绞盘的牵引拉力可以增加到980kN(10000kgf)车上还装有辅助绞盘;车体前面装有液压操作的推土铲。此外,还装有拖牵设备、全套修理工具和抢救设备。

16.ИМР战斗工程车 该车以T-72坦克为底盘用以代替用T-55坦克底盘制成的ИМР战斗工程车,备有车前安装的V型或一字型推土铲,车上还有1个液压吊车,配有包括拔树根的铗子等多种吊具。

俄罗斯装备的先进主战坦克。装有1门125毫米滑.膛炮,采用了自动装填机构、复合装甲、防辐射衬层、车体侧屏蔽等,战斗全重。41吨,乘员3人,弹药基数40发。最大时速60千米。最大行程650千米,是目前重量最轻、体积最小的主战坦克。

苏联60年代研制的T-64主战坦克由于单价太高,无法完全替换数量众多的T-54/55坦克。为了保持坦克技术和数量的优势,苏联利用T-64坦克的某些先进技术,经T-70试验车,发展成T-72主战坦克,1971年开始服役。 T-72坦克不但有效取代了T-54/55,更弥补了T-64和T-80之类高性能坦克数量的不足,使苏联装甲部队在整个冷战期间维持了绝对的数量优势。

1973年下塔吉尔的T-62生产线改生产T-72,1974年批量装备部队。T-72系列坦克产量在20000辆以上,捷克、波兰、印度、南斯拉夫和罗马尼亚也有生产。目前至少有15个国家装备了T-72系列。

威武的乌龟
直率的心情
2026-02-01 05:36:11
来源:制冷百科、易筑暖通 如有侵权,请联系删除

一、什么是泵?

泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。

泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。

泵通常可按工作原理分为容积式泵、动力式泵和其他类型泵三类。除按工作原理分类外,还可按其他方法分类和命名。如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。

泵的各个性能参数之间存在着一定的相互依赖变化关系,可以画成曲线来表示,称为泵的特性曲线,每一台泵都有自己特定的特性曲线。

二、泵的定义与历史来源

输送液体或使液体增压的机械。广义上的泵是输送流体或使其增压的机械,包括某些输送气体的机械。泵把原动机的机械能或其他能源的能量传给液体,使液体的能量增加。

水的提升对于人类生活和生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17世纪)、中国的桔槔(前17世纪)、辘轳(前11世纪)、水车(公元1世纪) ,以及公元前3世纪古希腊阿基米德发明的螺旋杆等。公元前200年左右,古希腊工匠克特西比乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4叶片滑片泵的记载, 以后陆续出现了其他各种回转泵 。1689年,法国的D.帕潘发明了4叶片叶轮的蜗壳离心泵。1818年 ,美国出现了具有径向直叶片 、半开式双吸叶轮和蜗壳的离心泵。1840~1850年,美国的H.R.沃辛顿发明了泵缸和蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851~1875年,带有导叶的多级离心泵相继发明,使发展高扬程离心泵成为可能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围和应用也日渐扩大。

三、泵的分类依据

(一)工作原理

1)工作原理可分为又分为叶片式、容积式和其它形式。

①叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。

②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。

③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。

2)按工作叶轮数目来分类

① 单级泵:即在泵轴上只有一个叶轮。

② 多级泵:即在泵轴上有两个或两个以上的叶轮,这时泵的总扬程为n个叶轮产生的扬程之和。

3)按工作压力来分类

① 低压泵:压力低于100米水柱;

② 中压泵:压力在100~650米水柱之间;

③ 高压泵:压力高于650米水柱。(多级离心泵可达2800m)

4)按叶轮进水方式来分类

① 单侧进水式泵:又叫单吸泵,即叶轮上只有一个进水口;

② 双侧进水式泵:又叫双吸泵,即叶轮两侧都有一个进水口。它流量比单吸式泵大一倍,可以近似看作是二个单吸泵叶轮背靠背地放在了一起。

5)按泵壳结合缝形式来分类

① 水平中开式泵:即在通过轴心线的水平面上开有结合缝。(最常见的水平中开泵是双吸泵)

② 垂直结合面泵:即结合面与轴心线相垂直。

6)按泵轴位置来分类

① 卧式泵:泵轴位于水平位置。

② 立式泵:泵轴位于垂直位置。

7)按叶轮出来的水引向压出室的方式分类

① 蜗壳泵:水从叶轮出来后,直接进入具有螺旋线形状的泵壳。

② 导叶泵:水从叶轮出来后,进入它外面设置的导叶,之后进下一级或流入出口管。(常用于多级泵和轴流泵)

(二)、操作原理

由若干个弯曲的叶片组成的叶轮置于具有蜗壳通道的泵壳之内。叶轮紧固于泵轴上,泵轴与电机相连,可由电机带动旋转。吸入口位于泵壳中央与吸入管路相连,并在吸入管底部装一止逆阀。泵壳的侧边为排出口,与排出管路相连,装有调节阀。

离心泵之所以能输送液体,主要是依靠高速旋转叶轮所产生的离心力,因此称为离心泵。

离心泵的工作过程:

开泵前,先在泵内灌满要输送的液体。

开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向叶轮外周,压力增高,并以很高的速度流入泵壳。在泵壳中由于流道的不断扩大,液体的流速减慢,使大部分动能转化为压力能。最后液体以较高的静压强从排出口流入排出管道。泵内的液体被抛出后,叶轮的中心形成了真空,在液面压强(大气压)与泵内压力(负压)的压差作用下,液体便经吸入管路进入泵内,填补了被排除液体的位置。

离心泵启动时,如果泵壳内存在空气,由于空气的密度远小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心处产生的低压不足以造成吸上液体所需要的真空度,这样,离心泵就无法工作。为了使启动前泵内充满液体,在吸入管道底部装一止逆阀。此外,在离心泵的出口管路上也装一调节阀,用于开停车和调节流量。

四、泵在各个领域中的应用

从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高达19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200摄氏度以下,最高可达800摄氏度以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。

在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。

在农业生产中,泵是主要的排灌机械。我国农村幅原广阔,每年农村都需要大量的泵,一般来说农用泵占泵总产量一半以上。

在矿业和冶金工业中,泵也是使用最多的设备。矿井需要用泵排水,在选矿、冶炼和轧制过程中,需用泵来供水先等。

在电力部门,核电站需要核主泵、二级泵、三级泵、热电厂需要大量的锅炉给水泵、冷凝水泵、循环水泵和灰渣泵等。

在国防建设中,飞机襟翼、尾舵和起落架的调节、军舰和坦克炮塔的转动、潜艇的沉浮等都需要用泵。高压和有放射性的液体,有的还要求泵无任何泄漏等。

在船舶制造工业中,每艘远洋轮上所用的泵一般在百台以上,其类型也是各式各样的。其它如城市的给排水、蒸汽机车的用水、机床中的润滑和冷却、纺织工业中输送漂液和染料、造纸工业中输送纸浆,以及食品工业中输送牛奶和糖类食品等,都需要有大量的泵。

总之,无论是飞机、火箭、坦克、潜艇、还是钻井、采矿、火车、船舶,或者是日常的生活,到处都需要用泵,到处都有泵在运行。正是这样,所以把泵列为通用机械,它是机械工业中的一类生要产品。

五、泵的基本参数

表征泵主要性能的基本参数有以下几个:

1、流量Q

流量是泵在单位时间内输送出去的液体量(体积或质量)。

体积流量用Q表示,单位是:m3/s,m3/h,l/s等。

质量流量用Qm表示,单位是:t/h,kg/s等。

质量流量和体积流量的关系为:

Qm=ρQ

式中ρ——液体的密度(kg/m3,t/m3),常温清水ρ=1000kg/m3。

2、扬程H

扬程是泵所抽送的单位重量液体从泵进口处(泵进口法兰)到泵出口处(泵出口法兰)能量的增值。也就是一牛顿液体通过泵获得的有效能量。其单位是N·m/N=m,即泵抽送液体的液柱高度,习惯简称为米。

3、转速n

转速是泵轴单位时间的转数,用符号n表示,单位是r/min。

4、汽蚀余量NPSH

汽蚀余量又叫净正吸头,是表示汽蚀性能的主要参数。汽蚀余量国内曾用Δh表示。

5、功率和效率

泵的功率通常是指输入功率,即原动机传支泵轴上的功率,故又称为轴功率,用P表示;

泵的有效功率又称输出功率,用Pe表示。它是单位时间内从泵中输送出去的液体在泵中获得的有效能量。

因为扬程是指泵输出的单位重液体从泵中所获得的有效能量,所以,扬程和质量流量及重力加速度的乘积,就是单位时间内从泵中输出的液体所获得的有效能量——即泵的有效功率:

Pe=ρgQH(W)=γQH(W)

式中ρ——泵输送液体的密度(kg/m3);

γ——泵输送液体的重度(N/m3);

Q——泵的流量(m3/s);

H——泵的扬程(m);

g——重力加速度(m/s2)。

轴功率P和有效功率Pe之差为泵内的损失功率,其大小用泵的效率来计量。泵的效率为有效功率和轴功率之比,用η表示。

举例:

流量 200 l/s,扬程37.5m ,选用水泵型号ASP200B ,叶轮直径360mm 转速 1450RPM,效率87% 工况点轴功率 84.5kW.

如果转速变为1000RPM,根据相似定律此时流量和扬程及功率为多少?

N1 = 1450RPM, N2 = 1000RPM

Q1= 200l/s Q2 = Q1 x N2/N1 = 200×1000/1450= 138l/s

H1 = 37.5m H2 = H1 x (N2/N1)2 =37.5 ×(1000/1450)2 = 17.8m

P1 = 84.5kW P2 = P1 x (N2/N1)3= 84.5×(1000/1450)3 = 27.7kW

六、什么叫流量?用什么字母表示?如何换算?

单位时间内泵排出液体的体积叫流量,流量用Q表示,计量单位:立方米/小时(m3/h),升/秒(l/s), L/s=3.6 m3/h=0.06 m3/min=60L/min

G=Qρ G为重量 ρ为液体比重

例:某台泵流量50 m3/h,求抽水时每小时重量?水的比重ρ为1000公斤/立方米。

解:G=Qρ=50×1000(m3/h·kg/ m3)=50000kg / h=50t/h

七、什么叫扬程?

单位重量液体通过泵所获得的能量叫扬程。泵的扬程包括吸程在内,近似为泵出口和入口压力差。扬程用H表示,单位为米(m)。泵的压力用P表示,单位为Mpa(兆帕),H=P/ρ.如P为1kg/cm2,则H=(lkg/ cm2)/(1000kg/ m3) H=(1kg/ cm2)/(1000公斤/m3)=(10000公斤/m2)/1000公斤/m3=10m

1Mpa=10kg/c m2,H=(P2-P1)/ρ (P2=出口压力 P1=进口压力)

八、什么叫汽蚀余量?什么叫吸程?

泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用米标注,用(NPSH)r。吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)

标准大气压能压管路真空高度10.33米。

例如:某泵必需汽蚀余量为4.0米,求吸程Δh?

解:Δh=10.33-4.0-0.5=5.83米

九、什么是水泵的汽蚀现象以及其产生原因

1、汽蚀

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。

2、汽蚀溃灭

汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

3、产生汽蚀的原因及危害

泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

4、汽蚀过程

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。

十、什么是泵的特性曲线?

通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。

十一、什么叫泵的效率?公式如何?

指泵的有效功率和轴功率之比。η=Pe/P

泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。

有效功率即:泵的扬程和质量流量及重力加速度的乘积。

Pe=ρg QH (W) 或Pe=γQH/1000 (KW)

ρ:泵输送液体的密度(kg/m3)

γ:泵输送液体的重度 γ=ρg (N/ m3)

g:重力加速度(m/s)

质量流量 Qm=ρQ (t/h 或 kg/s)

十二、什么是泵的全性能测试台?

能通过精密仪器准确测试出泵的全部性能参数的设备为全性能测试台。国家标准精度为B级。流量用精密蜗轮流量计测定,扬程用精密压力表测定。吸程用精密真空表测定。功率用精密轴功率机测定。转速用转速表测定。效率根据实测值:n=rQ102计算。

十三、泵的选型

选型依据:我们要选择什么样的泵,需要哪些条件依据 ?

1、介质的特性:介质名称、密度、粘度、腐蚀性、毒性等。

a. 介质名称:清水、污水、石油等。当介质含气量>75%时,最好选用齿轮泵或者螺杆泵。

b. 密度:

离心泵的流量与密度无关;

离心泵的扬程与密度无关;

离心泵的效率不随密度改变;

当密度≠1000Kg/m3时,电机的功率应该为一般功率与介质相对清水密度比的乘积,以防电机过载超流。

c. 粘度:

介质的粘度对泵的性能影响很大,粘度过大时,泵的压头(扬程)减小,流量减小,效率下降,泵的轴功率增大。

当粘度增加时,泵的扬程曲线下降,最佳工况的扬程和流量均随之下降,而功率则随之上升,因而效率降低。一般样本上的参数均为输送清水时的性能,当输送粘性介质时应进行换算。

d. 腐蚀性:介质有腐蚀时,采用抗腐蚀性能好的材料。

e. 毒性:考虑密封方式,可采用干气密封等。

2、介质中所含固体的颗粒直径、含量多少。

根据颗粒直径、含量多少,可选择采用单流道、双流道、多流道形式的叶轮。颗粒含量>60%时,考虑采用渣浆泵。

3、介质温度:(℃)

高温介质需考虑密封材料的选择及材料的热膨胀系数。介质温度偏低时,考虑采用低温润滑油和低温电机。

4、所需要的流量(Q)

a、如果生产工艺中已给出最小、正常、最大流量,应按最大流量考虑。

b、如果生产工艺中只给出正常流量,应考虑留有一定的余量。

c、如果基本数据只给质量流量,应换算成体积流量。

5、扬程:

水泵的扬程大约为提水高度的1.15~1.2倍(使用于补水泵只给出系统图需要计算扬程的状况) 。

如遇到只给出最小流量、最大流量及相对应的扬程,应尽可能按大流量选择。

因为:

a、高扬程的泵用于低扬程,便会出现流量过大,导致电机超载,若长时间运行,电机温度升高,甚至烧毁电机。

b、小流量泵在大流量下运行时,会产生汽蚀,泵长时间汽蚀,影响水泵过流部件的寿命。

十四、泵的汽蚀

1、汽蚀形成

泵在运转中,抽送液体的绝对压力降低到当时温度下的该液体汽化压力时,液体便在该处开始汽化,形成气泡,当含有大量气泡的液体流进叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁击穿。

2.汽蚀的危害

a、叶轮上留下打击状的坑;影响叶轮的使用寿命。

b、设备产生振动。

c、增加噪音。

d、轻微的汽蚀只会造成水泵效率或扬程的降低。低比转速泵随汽蚀性能下降明显,高比转速泵,当汽蚀达到一定程度时,性能开始下降。

e、 严重的汽蚀会产生很强的噪音,并缩短水泵的使用寿。

f、 估算来讲,损失最大占设计扬程的3%。

g、 对于多级水泵, 汽蚀只会对第一级叶轮产生影响。

3、泵汽蚀的基本关系式为:

NPSHc≤NPSHr≤[NPSH]≤NPSHa

式中:

NPSHa—装置汽蚀余量又叫有效汽蚀余量,是指在现场条件下的汽蚀余量。它可也根据系统的设计图纸计算出来,越大越不易汽蚀;

NPSHr—泵汽蚀余量,又叫必需的汽蚀余量,是指水泵的一个特性数据,它是由水泵制造厂商提供的。该数值在水泵的性能图表中已经被标示出来,越小泵抗汽蚀性能越好;

NPSHc—临界汽蚀余量,是指对应泵性能下降一定值的汽蚀量;

[NPSH]—许用汽蚀余量,是确定泵使用条件用的汽蚀余量。

为保证系统的安全运行:实际汽蚀余量值(NPSHa)必须要 高于 设计汽蚀余量值(NPSHr)。即:NPSHa >NPSHr。

4.实际汽蚀余量(NPSHa)的计算公式 :NPSHa = (Hz-Hf) +(Hp–Hvp)

其中:

Hp = 水泵入口处液体表面的绝对压力 (m)

Hz = 液体距离水泵中心线的静态高差 (m)

注: 对于立式水泵 以第一级叶轮的中心线为准。

Hf = 管路系统入口处摩擦和入口损失包括动压头。(m)

Hvp = 在水泵工作温度下的液体蒸汽压力。(m)

如果NPSHA数值很小,建议选择:

更大一些型号的水泵或转速更慢一些的水泵。

5、防止汽蚀的措施

防止泵发生汽蚀从两方面考虑,即增大NPSHa和减小NPSHr,常用的以下几种方法。

a、减小几何吸上高度hg(或增加几何倒灌高度);

△h=10m- NPSH-∑h

∑h:管路阻力,也叫安全系数,取:0.5~1.0m水柱

△h:吸程

b、增加管径,尽量减小管路长度,弯头和附件等;

c、尽量调小流量,防止泵长时间在大流量下运行;

d、在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀;

e、加诱导轮或增加叶轮进口处的光洁度。

f、对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料。

十五、常见及需要注意的问题

1、电机的选择

电机的选择要留有一定的安全余量。国内厂家经验做法:

轴功率

余量

0.12-0.55kw

1.3-1.5倍

0.75-2.2kw

1.2-1.4倍

3.0-7.5kW

1.15-1.25倍

11kW以上

1.1-1.15倍

2、离心泵启动时要关闭出口阀,轴流泵启动时要打开出口阀。

因离心泵启动时,泵的出口管路内还没水,因此还不存在管路阻力和提升高度阻力,在泵启动后,泵扬程很低,流量很大,此时泵电机(轴功率)输出很大(据泵性能曲线),很容易超载,就会使泵的电机及线路损坏,因此启动时要关闭出口阀,才能使泵正常运行。

离心泵在零流量时,轴功率为额定工况下轴功率的30%~90%。

轴流泵在零流量时,轴功率为额定工况下轴功率的140%~200%。

所以轴流泵要开阀启动。

3、泵启动前要检查泵轴运动是否正常,是否有卡死想象。点动电机,看运转方向是否正确。

4、泵安装时,泵进出口管路上不能承重。泵轴对中要在注满水的

条件下进行。

5、潜水排污泵长期不用时,应清洗并吊起置于通风干燥处,注意防冻。若置于水中,每15天至少运转30min(不能干磨),以检查其功能和适应性。

决定机械密封寿命长短的关键点

水泵设计 (轴是否偏移, 轴承负载和轴承座的同心度…)

安装 (轴对中是否保持… )

工作点 (是否在高效区, 如在可延长机械密封寿命)

表面材料 (适合介质,碳化硅、碳化钨)

密封润滑 (润滑不好可缩短密封寿命)

应用场合 (如果在高温、高压场合, 密封寿命缩短)

轴承

轴承寿命与其承受负荷有关。

通常情况下轴承寿命为 50,000 hrs (大约6年 24 x 7)

高负荷轴承设计寿命可达10万小时

决定轴承寿命长短的关键点

轴承荷载在设计点

水泵是否在高效区工作 (在高效区工作可延长轴承寿命).

安装/水泵轴对中/泵室

由汽蚀或其他系统原因引起水泵振动将缩短轴承寿命

十六、空调水泵的变频控制原理

(1) 定压差控制:控制供、 回水干管压差保持恒定的控制方法称为定压差控制。供、 回水干管压差不变时水泵提供的扬程保持恒定,故定压差控制又称为定扬程控制。此做法是:根据冷热水循环泵前后的集水器和分水器的静压差,控制冷热水循环泵的转速,使此静压差始终稳定在设定值附近。

(2) 定末端压差控制:控制末端(最不利)环路压差保持恒定的控制方法称为末端压差控制。此做法是:根据空调水系统中处于最不利环路中空调设备前后的静压差,控制冷热水循环泵的转速,使此静压差始终稳定在设定值附近。

(3) 最小阻力控制:最小阻力控制是根据空调冷热水循环系统中各空调设备的调节阀开度,控制冷热水循环泵的转速,使这些调解阀中至少有一个处于全开状态的控制方法。

(4) 温差控制:控制供、回水干管水温差保持恒定的控制方法,称为温差控制。当负荷下降时,如流量保持不变,则回水温度下降,温差相应变小,要保持温差不变,可通过控制温差控制器、变频器来降低水泵转速,减少水流量,此时水泵能耗以转速三次方的关系递减。

机电天下招募永久VIP会员,一次性缴费,永久更新!

得到会员资料库所有资料+后续无限更新+高品质会员群+协助下载+协助解疑+会员其他权利等,识别下图二维码详细咨询!

机电天下平台(网址:www.mepbbs.com),聚集天下建筑机电行业之精英、汇聚天下建筑机电行业之精华!创建于2015 年 5月18 日。机电天下媒体矩阵主要由机电天下网站、机电天下公众号、机电天下学院、机电天下头条号等十余个知名平台自媒体组成,为建筑行业领域内的机电设计师、顾问、施工安装工程管理人员、设备材料厂商、开发商等提供信息服务、互联网精准营销服务、专业资料服务、技术培训服务等。

无聊的网络
温柔的诺言
2026-02-01 05:36:11
在使用管道离心泵时经常会出现泵出口流量达不到管道离心泵铭牌所标参数,而且流量及其不稳定,这种现象就是离心泵出现汽蚀现象了,那么离心泵出现汽蚀现象怎么办呢,下面为您分享几点离心泵出现汽蚀怎么办的方法:

(1) 选择合适大小的叶片管道离心泵前盖板的形状及进口位置,我们经过对各种角度进口边位置的叶轮进行汽蚀性能的测试,通常选用叶片向管道离心泵吸水口越近,管道离心抗汽蚀的性能就越好.也就是管道离心泵进口处弯头半径幅度越大抗汽蚀性能越好。

(2)还可以采用双吸离心泵.双吸管道离心泵的叶轮等于两个单级管道离心泵的叶轮联在一起工作的效果,所以采用双吸离心泵具有较好的抗汽蚀性能.

(3)也可以适当加大管道离心泵的入口直径,比如离心泵泵口径本来是50的口径可以选择进口采用65的管径。

(4)还有种办法可以采用有诱导轮的立式多级泵,多级管道离心泵的诱导轮它装在*级叶轮前面,称为前置诱导轮,.当液体流入泵腔时诱导轮便对液体起到增加能量的作用,相当于对进入后面叶轮的液体起增压作用,从而提高管道离心泵的自吸性.

(5) 由于使用条件的限制,不可能完全避免发生汽蚀时,让泵生产厂家把泵的叶轮材料选用抗汽蚀的材料.,应采用抗汽蚀的材料生产叶轮.一般常用的材料有青铜、不锈钢、合金钢和高镍合金等.实践证明,叶轮流道表面越光滑,材质的强度和韧性越好,叶轮的硬度和化学稳定性越高,管道离心泵抗汽蚀的性能就越好。

酷炫的大树
昏睡的电脑
2026-02-01 05:36:11
楼上已经说的非常清楚了,我就不累赘了。我浅淡一下吧。

简单的来说,气蚀现象,就是在泵的进口位置,出现了进空气的情况,导致液体雾化,现成气泡。受高压冲压叶轮,导致叶轮损坏,这就是汽蚀。

防范措施有一、降低安装高度;二、加强进口管道中的气密性;三、采用抗汽蚀能力强的叶轮等

长情的砖头
小巧的蛋挞
2026-02-01 05:36:11

具体解决方案如下:

1、表面处理:对需处理的工件进行补焊、脱脂处理、喷砂除锈。

①补焊:对过量冲蚀,不足以支撑胶粘剂强度的部位需要进行补焊。

②脱脂、除潮处理:去除工件表面的油脂,以棉纱擦拭工件表面,棉纱无油渍、水渍。用氧气乙炔将火焰调整到10CM长,以5cm/min的速度,使火焰反复均匀烘烤工件表面,去除工件表面的油脂和潮气。

③喷砂除锈:去除工件表面的氧化层,目视检查,喷砂面可见均匀的金属本色。喷砂处理完的工件不允许用带油脂手套直接接触喷砂面,喷砂处理后工件要注意防潮。

2、制作:模具、工具准备,将工件预热,胶粘剂预热,严格按照胶粘剂配比进行混合搅拌,搅拌完成后的胶粘剂盛在料盘中对预热完成的工件进行施胶,混合后的胶粘剂在料盘中停留时间不能超过3分钟,以保证胶粘剂对工件的充分粘合。施工完成后,对检查出的缺陷进行及时修补。

3、固化:在常温30°下24小时自然固化,不同条件可延长固化时间。

4、研磨:加温固化后的工件严格按照工件的尺寸进行研磨处理,密封相配面应试配合格。

5、喷漆:经检验合格后,对工件进行喷漆,要求喷漆表面均匀,不允许有流挂现象。

扩展资料:

汽蚀的原因

泵在吸入真空度大于允许吸入真空度时,发生汽蚀现象。主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处。

例如流量大于设计流量时发生在叶片进口靠近前盖板的叶片正面处(K1)。当叶轮入口处压强下降至被送液体在工作温度下的饱和蒸汽压时,液体将会发生部分汽化,生成的气泡将随液体从低压区进入高压区,在高压区气泡会急剧收缩。

凝结,其周围的液体以极高的速度冲向原气泡所占空间,产生高强度的冲击波,冲击叶轮和泵壳,发生噪音引起震动。由于长期受到冲击力反复作用以及液体中微量溶解氧的化学腐蚀作用,叶轮局部表面出现斑痕和裂纹甚至成海绵状损坏。

温婉的饼干
结实的煎饼
2026-02-01 05:36:11
汽蚀的原因-------在泵的进口处,由于液体在压力低(及液体温度高)的情况下液体内部产生汽化而形成汽泡,到压力升高处汽泡被突然“压灭”,四面的水冲向原汽泡空间,发生剧烈碰撞,有累及到叶轮等,使叶轮表面局部点受力被破坏的现象称汽蚀。

如抽水高度大,进口阀门关小,进口管道太小引起阻力增加而降低泵进口的压力,包括水的温度过高,均会使水汽化,即产生汽蚀。