离心泵的工作原理是什么,有什么种类
离心泵的工作原理是什么?
离心泵在化工生产中有广泛的应用,本装置中,乙二醇和水等常温液体都使用离心泵来输送。离心泵由电动机带动,泵体及吸入管路内充满液体,电机带动叶轮高速旋转,叶轮又带动叶片间的液体一道旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外缘并以较高的压强沿排出口流出,与此同时,叶轮中心处由于液体被甩出而形成一定的真空,而入口贮槽(热井、水槽、储罐等)液面处的压强比叶轮中心处要高,因此,贮槽内的液体在压差作用下进入泵内。叶轮不停旋转,液体也连续不断的被吸入和压出。由于离心泵之所以能够输送液体,主要靠离心力的作用,故称为离心泵。
离心泵的分类
离心泵的种类很多,分类方法常见的有以下几种方式
1、按叶轮吸入方式分:单吸式离心泵、双吸式离心泵。
2、按叶轮数目分:单级离心泵、多级离心泵。
3、按叶轮结构分:敞开式叶轮离心泵、半开式叶轮离心泵、封闭式叶轮离心泵。
4、按工作压力分:低压离心泵、中压离心泵、高压离心泵。
5、按泵轴位置分:卧式离心泵、立式离心泵。
首先将进口阀全部打开,关闭出口阀,启动电机,待转速正常后,才能逐步打开出口阀,调整到所需工况。 离心泵正确的运行方法 离心泵的运行可分为三个步骤,即启动、运行、停止。
启动:启动前应做好如下准备工作:
1 检查水泵设备的完好情况。
2 轴承充油、油位正常、油质合格
3 将离心泵的进口阀门全部打开。
4 泵内注水或真空泵引水倒灌除外打开放气阀排气。
5 检查轴封漏水情况,填料密封以少许滴水为宜。
6 电机旋转方向正确。
以上准备工作完成后,便可启动电机,待转速正常后,检查压力、电流并注意有无振动和噪音。一切正常后,逐步开启出口阀,调整到所需工况,注意关阀空转的时间不宜超过 3 分钟。
离心泵启动:启动前应做好如下准备工作:
1、检查水泵设备的完好情况。
2、轴承充油、油位正常、油质合格
3、将离心泵的进口阀门全部打开。
4、泵内注水或真空泵引水倒灌除外打开放气阀排气。
5、检查轴封漏水情况,填料密封以少许滴水为宜。
6、电机旋转方向正确。
以上准备工作完成后,便可启动电机,待转速正常后,检查压力、电流并注意有无振动和噪音。一切正常后,逐步开启出口阀,调整到所需工况,注意关阀空转的时间不宜超过3分钟。
离心泵运行:运行期间,主要是巡回检查,检查的内容有四个方面:
1、轴承的检查
(1)
轴承温度不超过
75℃。
(2)
轴承室不能进水、进杂质,油质不能乳化或变黑。
(3)
滚动轴承稀油润滑时,油面应不低于油标中心线。
(4)
是否有异音,滚动轴承损坏时一般会出现异常声音。
2、真空表、压力表、电流表读书是否正常
(1)
真空表指针不能摆动过大,过大可能使泵入口发生汽化,另外真空表读书也不能过高,过高可能是入口阀堵塞,卡住或吸水池水位降低等。
(2)
出口压力表读书过低,可能是密封环、导叶套严重磨损。定、转子间隙过大,或者是出口阀开启太大,流量大、扬程低。
(3)
电流表读书过大,可能是流量大,或者是定、转子之间产生摩擦。
3、泵机组是否产生较大的振动,造成振动的原因有:
(1)
水泵和电机轴心线不对中。
(2)
水泵或电机底脚螺栓松动,或者基础不牢。
(3)
转子质量不平衡。
(4)
泵在小流量运行,产生径向力、回流、气蚀。
4、密封工作是否正常
(1)
K
形动力密封正常运行时不会有滴漏。
(2)
有冷却水装置的,要检查水流是否正常。
二、离心泵停止作业时的正确操作顺序
1)离心泵的叶轮是离心泵最重要的组成,在停止运行时为了防止泵发生倒灌现象,要先关闭出口阀,防止叶轮受到破坏。
2)离心泵停止运转后应关闭泵的人口阀门,待离心泵冷却后再依次关闭附属系统的阀门,否则会对离心泵造成损害。
3)高温离心泵停车应按设备技术文件的规定执行,停车后应每偏20一30min盘车半圈,直到泵体温度降至50℃为止。
4)关闭离心泵后我们要注意离心泵启动时产生的噪音震动会不会随着离心泵的关闭而迅速消失,如果消失的快证明离心泵内部有卡顿现象应该及时检查维护。
3)低温离心泵停车时,当无特殊要求时,泵内应经常充满液体;吸入阀和排出阀应保持常开状态;采用双端面机械密封的低温泵,液位控制器和泵密封腔内的密封液应保持泵的灌浆压力。
4)输送易结晶,易凝固,易沉淀等介质的离心泵,停泵后应防止堵塞,并及时用清水或其他介质冲洗泵和管道。
5)排出离心泵内积存的液体,防止锈蚀和冻裂。
无论是进口隔膜泵还是离心泵的启动和停止方法步骤其实都不难,只要前期工作准备妥当,按照泵的说明书一步步操作,注意观察泵的工作状态,就能保证离心泵可以正常运行,使工作中的离心泵能发挥最大功能,帮助人们能够快速安全的冲去运输液态物体。
(1)节流调节。节流调节的原理,就是改变管路特性曲线的形状,从而变更离心泵的工作点。当泵工作中要使流量减小时关小泵排出口闸阀,则闸阀的阻力增大。
由于闸阀关小而多消耗在闸阀上的能量,所以这种调节方法损失大、经济性差,但由于此种方法简便,在操作中广泛采用。
(2)旁路返回调节。此种调节方法是开启泵的旁路阀,一部分液体从泵的排出管返回吸人管,从而减小排出管流量。
这种方法对旋涡泵较合适,这是因为旋涡泵的特性曲线在降低流量时扬程急剧上升,轴功率反而增加,而加大流量时轴功率反而稍有下降。
(3)变速调节。其原理就是通过改变离心泵转速来改变泵的特性曲线位置,从而变更工作点。这种调节方法没有附加的能量损失,是一种比较经济的办法。但必须采用可变速电动机。
(4)切割叶轮外径调节。将离心泵叶轮外径车小,可使同一转速下泵的性能改变,既可改变流量也可改变扬程。
这种调节方法也没有附加的能量损失,是一种较经济的方法,但是只适用于离心泵在较长时间改变为小流量操作时采用。
1、联系保全、电工、仪表工检查设备是否正常。
2、手动盘泵、转子转动是否灵活。
3、打开泵冷却水阀。
4、润滑油位是否正常。
5、泵进口所连接塔、釜液位是否正常,防止抽空。
6、开全进口阀、打开泵体及进口管排气阀排净气体。
7、启动电机,待压力正常后,再开出口阀。
8、观察压力、电流是否在规定范围。
9、低温泵启动是要先开启冷却泵的管线,当泵冷却完全后方可启动,运行和备用泵冷却管线均处于开启状态。
二、离心泵停泵
1、缓慢关闭泵出口阀,按停车电扭,将泵停止运转。
2、关闭泵入口阀,根据实际情况需要,决定是否须将泵体压力卸掉,溶液排净。
3、关闭冷却水及高压密封水(冬季应使水管内少量流水,以防冻结)。
三、离心泵倒泵
1、按正常开车程序将备用泵开启。
2、确定新开泵无问题后可进行倒泵。
3、缓开备用泵出口阀,同时缓关原用泵出口阀。
4、调节新开泵出口阀直至所需流量,关闭原用泵出口阀。
5、确认新泵无问题时,停掉原用泵。
按结构可分为:1立式泵,2卧式泵,3单结泵,4多级泵
按动力形式可分成:1电动泵,2蒸汽泵,3汽(柴油)机泵,4手动泵
按传动方式可分:1皮带式,2联轴器式,3直接式
离心泵工作原理:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。叶轮装在一个螺旋形的外壳内,当叶轮旋转时,流体轴向流入,然后转90度进入叶轮流道并径向流出。叶轮连续旋转,在叶轮入口处不断形成真空,从而使流体连续不断地被泵吸入和排出。
原理
起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。
泵的总扬程=吸水扬程+压水扬程,其中吸水扬程由大气压决定。
离心式水泵的抽水高度称为扬程。它是采用“吸进来”、“甩出去”,的方法来抽水的。
第一级扬程称为“吸水扬程”,靠叶片旋转形成一个低压区,靠大气压把水压入低压区,而1标准大气压能支持10.336米高的水柱,所以吸水扬程的极限值是10.336米;
第二级扬程称为“压水扬程”,靠叶片旋转把水甩出去,水甩出去的速度越大,这一级扬程也越大。
因此,离心式水泵的扬程是两级扬程之和,也就是它的抽水高度远远超过了10.336米。
1,叶片式泵:离心泵、轴流泵、混流泵、旋涡泵等;
2,容积式泵:活塞泵、柱塞泵、隔膜泵等;
3,动力回转泵:螺杆泵、齿轮泵等;
4,特殊作用式:喷射泵、水锤泵、磁力驱动泵等;
作用原理如下:
1,叶片式泵依靠装有叶片的叶轮高速旋转,将机械能转化为液体的动能和位能,进而完成液体的压送。叶片式水泵中的液流在离心力的作用下,沿与泵轴线垂直的径向平面流出叶轮轴流泵中的液流,在推力作用下,沿轴向流出叶轮混流泵的叶轮出流方向介于离心泵和轴流泵之间,即在离心力和推力的共同作用下,液流沿斜向流出叶轮。这类泵效率较高,起动方便,性能可靠而且的流量、扬程适用范围较大,因此在给排水工程中得到了广泛应用。
2,容积式泵是依靠工作元件在泵缸内作往复或回转运动,使工作容积交替地增大和缩小,以实现液体的吸入和排出。工作元件作往复运动的容积式泵称为往复泵,作回转运动的称为回转泵。前者的吸入和排出过程在同一泵缸内交替进行,并由吸入阀和排出阀加以控制;后者则是通过齿轮、螺杆、叶形转子或滑片等工作元件的旋转作用,迫使液体从吸入侧转移到排出侧。
3,特殊作用的泵工作原理各不相同。
离心泵常用调节方法分析
离心泵在水利、化工等行业利用十分广泛,对其工况点的选择和能耗的分析也日益受到器重。所谓工况点,是指水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及吸上真空高度等,它表现了水泵的工作才能。通常,离心泵的流量、压头可能会与管路系统不一致,或由于生产任务、工艺请求产生变更,需要对泵的流量进行调节,实在质是转变离心泵的工况点。除了工程设计阶段离心泵选型的准确与否以外,离心泵实际应用中工况点的选择也将直接影响到用户的能耗和本钱用度。因此,如何公平地转变离心泵的工况点就显得尤为重要。
离心泵的工作原理是把电动机高速旋转的机械能转化为被晋升液体的动能和势能,是一个能量传递和转化的过程。根据这一特点可知,离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况产生变更,其工况点就会转移。工况点的转变由两方面引起:一.管道系统特征曲线转变,如阀门节流;二.水泵本身的特征曲线转变,如变频调速、切削叶轮、水泵串联或并联。
下面就这几种方法进行分析和比拟:
一、阀门节流
转变离心泵流量最简略的方法就是调节泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),实在质是转变管路特征曲线的地位来转变泵的工况点。如图1所示,水泵特征曲线Q-H与管路特征曲线Q-∑h的交点A为阀门全开时水泵的极限工况点。关小阀门时,管道局部阻力增加,水泵工况点向左移至B点,相应流量减少。阀门全关时,相当于阻力无限大,流量为零,此时管路特征曲线与纵坐标重合。 从图1可看出,以关小阀门来把持流量时,水泵本身的供水才能不变,扬程特征不变,管阻特征将随阀门开度的转变而转变。这种方法把持简便、流量持续,可以在某一最大流量与零之间随便调节,且无需额外投资,实用处合很广。但节流调节是以耗费离心泵的过剩能量(图中暗影部分)来保持必定的供应量,离心泵的效率也将随之降落,经济上不太公平。
二、变频调速
工况点偏离高效区是水泵需要调速的基础条件。当水泵的转速转变时,阀门开度保持不变(通常为最大开度),管路系统特征不变,而供水才能和扬程特征随之转变。如图2所示,A为水泵平衡工况点(也称工作点),对应效率ηa。欲减小流量,可将转速下降,此时工况点为B,对应效率ηb,水泵仍处于高效区内。假如采用阀门节流的方法来调节,则工况点为C,对应效率为ηc,泵的效率降落。由此可见,在所需流量小于额定流量的情况下,变频调速时的扬程比阀门节流小,所以变频调速所需的供水功率也比阀门节流小,图2中的暗影部分表现的就是变频调速所节俭的供水功率。 很显然,与阀门节流相比,变频调速的节能后果很突出,离心泵的工作效率更高。另外,采用变频调速后,不仅有利于下降离心泵产生汽蚀的可能性,而且还可以通过对升速/降速时间的预置来延伸开机/停机过程,使动态转矩大为减小,从而在很大程度上打消了极具损坏性的水锤效应,大大延伸了水泵和管道系统的寿命。
事实上,变频调速也有局限性,除了投资较大、保护本钱较高外,当水泵变速过大时会造成效率降落,超出泵比例定律范畴,不可能无限制调速。
三、切削叶轮
当转速必定时,泵的压头、流量均和叶轮直径有关。对同一型号的泵,可采用切削法转变泵的特征曲线。设离心泵原叶轮直径为D、流量为Q、扬程为H、功率为P,切削后的叶轮直径为D′、流量为Q′、扬程为H′、功率为P′,则其相互关系为:
上述三式统称为泵的切削定律。切削定律是建立在大批感性实验材料基础上的,它认为假如叶轮的切削量把持在必定限度内(此切削限量与水泵的比转数有关),则切削前后水泵相应的效率可视为不变。切削叶轮是转变水泵性能的一种简便易行的措施,即所谓变径调节,它在必定程度上解决了水泵类型、规格的有限性与供水对象请求的多样性之间的抵触,扩大了水泵的应用范畴。当然,切削叶轮属不可逆过程,用户必需经过准确盘算并衡量经济公平性后方可实行。
四、水泵串联和并联
水泵串联是指一台泵的出口向另一台泵的进口输送流体。以最简略的两台雷同型号、雷同性能的离心泵串联为例:如图3所示,串联性能曲线相当于单泵性能曲线的扬程在流量雷同的情况下迭加起来,串联工作点A的流量和扬程都比单泵工作点B的大,但均达不到单泵时的2倍,这是由于泵串联后一方面扬程的增加大于管路阻力的增加,致使充裕的扬程促使流量增加,另一方面流量的增加又使阻力增加,克制了总扬程的升高。 水泵串联运行时,必需留心后一台泵是否能够蒙受升压。启动前每台泵的出口阀都要封闭,然后次序开启泵和阀门向外供水。
水泵并联是指两台或两台以上的泵向同一压力管路输送流体,其目标是在压头雷同时增加流量。仍然以最简略的两台雷同型号、雷同性能的离心泵并联为例:如图4所示,并联性能曲线相当于单泵性能曲线的流量在扬程相等的情况下迭加起来,并联工作点A的流量和扬程均比单泵工作点B的大,但考虑管阻因素,同样达不到单泵时的2倍。
假如纯粹以增加流量为目标,那么毕竟采用并联还是串联应当取决于管路特征曲线的平坦程度,管路特征曲线越平坦,并联后的流量就越接近于单泵运行时的2倍,从而比串联时的流量更大,更有利于运作。
五、结 论
阀门节流固然会造成能量的丧失和浪费,但在一些简略场合仍不失为一种快速易行的流量调节方法;变频调速因其节能后果好、主动化程度高而越来越受到用户的青睐;切削叶轮一般多用于净水泵,由于转变了泵的结构,通用性较差;水泵串联和并联只实用于单台泵不能满足输送任务的情况,而且串联或并联的台数过多反而不经济。在实际利用时应从多方面考虑,在各种流量调节方法之中综合出最佳计划,确保离心泵的高效运行。