水泵气蚀现象产生的原因?
水泵汽蚀的原因在水泵进口处,由于吸水高所形成的真空,以及叶轮高速放置而往往使该处压力很低,从而为水的汽化提供了条件。当压力降低到水温的汽化压力时,因汽化而形成的大量水蒸汽汽泡,随未汽化的水流入叶轮内部高压区,汽泡在高压作用下在极短的时间内破裂,并重新凝结成水,汽泡周围的水迅速向破裂汽泡的中心集中而产生很大的冲击力。这种冲击力作用在水泵的壁上,就形成了对水泵的汽蚀。
泵在各个行业或领域中有着广泛的应用,是重要输送设备。其运行质量的安全性和稳定性不仅影响着连续生产,同时对能耗的影响也非常大。由于受设计、选材、安装等方面的影响,气蚀问题在相关领域较为普遍,甚至在部分企业表现的还较为严重。
一、给水泵发生汽蚀的原因:
1、除氧器水镇水位过低。
2、除氧器内部压力隆低。
3、给水泵再循环门误关或开得过小,给水泵打闷泵。
4、给水泵长时间在较小流量或空负荷下运转。
水泵汽蚀现象:水泵的汽蚀也就是泵体里产生气体了,泵体中有气体的话说会影响到水泵的性能,使水泵达不到相应的效果。
二、给水泵汽蚀危害:
1、汽蚀时传递到危害叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落。
2、发生汽蚀时,还会发出噪声,进而使泵体振动同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。
三、给水泵发生汽蚀处理方法:
索雷碳纳米聚合物材料是专门针对泵叶轮、泵壳等部位气蚀、冲刷现象而研发的一种新型材料,在泵工作中能够有效缓解因气蚀现象对泵本体内部金属材质造成的气蚀破坏,同时该材料具有优异的耐化学腐蚀性能和粘结力,保证缓解气蚀的同时避免了介质的腐蚀和涂层脱落问题。
该材料涂覆到叶轮表面以后,使其表面形成水力光滑表面,超光滑表面涂层表面光洁度是经过抛光后不锈钢的20倍,这种极光滑的表面减少了泵内流体的分层,从而减少泵内部紊流,降低了泵内的容积损失和水力损失,降低了电耗,达到降低水流阻力损失的目的,从而提高水泵的水力效率3%-10%,达到提高泵效的作用。
汽蚀余量是什么?什么是汽蚀现象
离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力pK最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300°C),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
由于连续的局部冲击,会使材料的表面逐渐疲劳损坏,引起金属表面的剥蚀,进而出现大小蜂窝状蚀洞,除了冲击引起金属部件损坏外,还会产生化学腐蚀现象,氧化设备。汽蚀过程是不稳定的,会使水泵发生振动和产生噪声,同时汽泡还会堵塞叶轮槽道,致使扬程、流量降低,效率下降。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
首先,先了解什么是气蚀:气蚀又称空蚀、穴蚀,是流体在高速流动和压力变化条件下,与流体接触的金属表面上发生洞穴状腐蚀破坏的现象。常发生在如离心泵叶片叶端的高速减压区。流体在此处形成空泡,空泡在高压区被压破并产生冲击压力。这个冲击压力会破坏金属表面上的氧化保护膜,而使腐蚀速度加快。空蚀的特征是先在金属表面形成许多细小的麻点,然后逐渐扩大成为孔穴。
其次,一般气蚀形成的原因是:由于离心泵的吸入口流体压力会下降,当液体的压力低于对应温度下的饱和蒸气压时,将形成气泡。另外,溶解在液体中的其他气体也可能析出而形成气泡。随后,当气泡流动到液体压力超过饱和压力的地方时,气泡便会溃灭。在溃灭瞬时会产生冲击力。固体表面经受这种冲击力的多次反复作用,材料腐蚀加速,使表面出现小凹坑。
第三:离心泵很难在长期运行过程中彻底消除空蚀。减少空蚀的有效措施是尽可能防止气泡的产生。首先应使与液体接触的表面具有很好的流线型,避免在局部地方出现涡流,因为涡流区压力低,容易产生气泡。此外,应当减少液体中溶解的气体含量和液体流动中的扰动,也可以限制气泡的形成。