建材秒知道
登录
建材号 > 真空泵 > 正文

真空泵阀片都有什么材质的

烂漫的八宝粥
坚强的老鼠
2022-12-28 18:38:00

真空泵阀片都有什么材质的

最佳答案
平淡的黑米
风中的心锁
2026-02-03 17:49:07

真空泵阀片的材质:

1、弹簧钢65Mn。用于滑阀泵或大型旋片泵、往复泵等。弹簧钢65Mn热处理及冷拔硬化后强度较高,具有一定的韧性和塑性;在相同表面状态和完全淬透情况下疲劳极限与合金弹簧相当。但淬透性差,主要用于较小尺寸的弹簧,如调压调速弹簧、测力弹簧、一般机械上的圆、方螺旋弹簧或拉成钢丝作小型机械上的弹簧。

2、不锈钢1Cr18Ni9Ti。用于水环泵。不锈钢1Cr18Ni9Ti就是普通的不锈钢(SUS321),其组织类别为奥氏体型。1Cr18Ni9Ti中18、9分别代表铬(%)、镍(%)的含量。是中国的不锈钢材料牌号。用于制作耐酸容器及设备衬里,抗磁仪表、医疗器械,具有较好耐晶间腐蚀性。

3、60Si2Mn弹簧钢。用于滑阀泵或直连旋片泵高级端。60Si2Mn弹簧钢是应用广泛的硅锰弹簧钢,强度、弹性和淬透性较55Si2Mn稍高。60Si2Mn弹簧钢业上制作承受较大负荷的扁形弹簧或线径在30mm以下的螺旋弹簧、也适于制作工作温度在250℃以下非腐蚀介质中的耐热弹簧以及承受交变负荷及在高应力下工作的大型重要卷制弹簧以及汽车减震系统等。

4、氟橡胶。用于旋片泵。氟橡胶(fluororubber)是指主链或侧链的碳原子上含有氟原子的合成高分子弹性体。氟原子的引入赋予橡胶优异的耐热性、抗氧化性、耐油性、耐腐蚀性和耐大气老化性,在航天、航空、汽车、石油和家用电器等领域得到了广泛应用,是国防尖端工业中无法替代的关键材料。

5、氟橡胶覆65Mn。用于直联旋片泵。

6、阀片是放在上轴承排气口位置的,其作用是封闭气缸内的冷媒,气缸内压缩冷媒,当压缩的压力达到一定值时阀片被压开,压缩后的冷媒从上轴承的排气口排出。在压缩的工程中把口堵上,排气的时候把口打开。其动作是靠气缸内部压力决定的。

最新回答
专注的项链
重要的月光
2026-02-03 17:49:07

提高泵抗汽蚀性能的措施有

1)

增大叶轮进口直径。这可以降低叶轮入口速度,提高泵的汽蚀性能,但泵的水力效率降低。

2)

增大叶片入口边宽度:可以使叶轮入口相对速度减小,从而提高泵的汽蚀性能。

3)

叶轮盖板进口部分曲率半径

4)

叶片进口边的位置和叶片进口部分的形状

叶片进口边适当向吸入口方向延伸,可使液体提早接受叶片的作用,且能增加叶片表面积,减小叶片工作面和背面的压差。

5)采用诱导轮提高泵的抗汽蚀性能

6)

减小叶片进口厚度

叶片进口厚度越薄,越接近流线型,叶片最大厚度离进口越远,叶片进口的压降越小,泵的抗汽蚀性能越好。

7)

开平衡孔

叶轮上的平衡孔,其中的泄流对进入叶轮的主流起破坏作用,平衡孔面积应不小于密封环间隙的5

倍,以减小泄

流速度,从而减小对主流的影响,提高泵的抗汽蚀性能。

8)

增加叶轮表面光洁度

叶轮进口部分越光滑,水力损失越小,会明显提高泵的抗汽蚀性能。

9)

采用抗汽蚀材料

独特的白开水
欢呼的项链
2026-02-03 17:49:07
气蚀试验结果示于表1,可见,铸铁和铸钢的抗气蚀性能有明显差别。铸铁中存在大

量石墨,微观下相当于预置了缺陷。气蚀空泡溃灭时产生的冲击力的作用范围在1~25

μm内,这对于直径为50~80 μ m的球状石墨和更大的片状石墨来说相当于集中应力,且

远远大于石墨的强度,因此石墨很快就会被掏成空洞。空洞的边缘缺乏足够的支撑,在

气蚀冲击力的不断打击下产生疲劳而剥落。如Q T600 -3与被试验的碳素铸钢和低合金铸钢

相比强度并不低,但抗气蚀性能却差得多虽然H T200的珠光体基体比Q T400 15的铁素

体基体强度高,但由于H T200中的石墨呈片状,导致的应力集中更严重,因此其抗气蚀性

能很差。可见石墨球化能改善铸铁的抗气蚀性能。

对于铸钢,金相组织不同抗气蚀性能也明显不同。气蚀冲击力作用范围小,可直接

作用在某- -个晶粒或微小缺陷内,不均匀组织中的较弱组织将会较早产生气蚀破坏。因

此材料中弱的组织或区域越多,其抗气蚀性能就越差。ZG 230-450、ZG 20SM n、ZG 310-

570和ZG 40C r都具有铁素体+珠光体组织。由于铁素体是一种较弱的组织,当受到气蚀冲

击力的打击时很快就产生疲劳破坏,因此铁素体量多的材料其抗气蚀性能就差。试验结

果体现出了这一点。

ZG 1C r18N 9T与ZG 230 450、ZG 20SM n、ZG 310 570和40C r相比具有组织较均匀的特

点,其抗气蚀性能也显著提高。对比ZG 1C r18N 9T和ZG 20SM n可看出,前者的强度远低

于后者,同时两者的韧性又相差不大,但前者的抗气蚀性能却比后者好得多。除两者组

织类型不同外,组织均匀性不同也是导致这种差异的重要原因。气蚀载荷具有微观性,

对不同组织具有“选择”性,而常规力学性能只能体现材料的宏观性能,因此用常规力

学性能无法衡量材料的抗气蚀性能。

ZG 1C r18N 9T与ZG OC r13N i4M o和ZG 0C rI3N 6M o相比,除奥氏体基体的强度较低外

还常常含有较多的条状铁素体。受气蚀作用时,条状铁素体首先破坏,从而加速了奥氏

体基体的破坏。因此,ZG 1C r18N 9T的抗气蚀性能明显不如后两种。图1是ZG 1Crl8N 9Ti

中条状铁素体首先破坏的情形。

ZG 0C r13N i4M o和ZG OC r13N i6M o具有较均匀的低碳马氏体组织,这种组织的综合力

学性能很好,同时也表现出良好的抗气蚀性能。但前者往往含有较多铁素体,因而其抗

气蚀性能不如后者。河见,不锈钢中应尽量避免铁素体的出现。

3结论

(1)由于石墨的存在,铸铁的抗气蚀性能很差。

(2)具有铁素体+珠光体组织的钢,其抗气蚀性能与铁素体的量有关,铁素体越多抗气

蚀性能越差。

(3)组织均匀对抗气蚀性能有利,具有较均匀低碳马氏体组织的ZG 0C rl3N iM o和

ZG0Cr13Ni6Mo有优良的抗气蚀性能。

(4)夹杂物对抗气蚀性能不利,因此为提高抗气蚀性能,应提高钢的纯度

标致的溪流
舒心的短靴
2026-02-03 17:49:07
答:离心油泵的吸入动力是靠吸入液面上压力与叶轮甩出液体后形成的低压差。叶轮入口处压力越来越低,则吸入能力越大,但若低于饱和蒸汽压则出现汽泡,原来溶于液体中的气体也逸出,这些小汽泡随气流流到叶轮内高压区时,在周围液体较高压力作用下,便会重新凝结,体积缩小,好似形成一个空穴,这时周围液体又以极高速度向空穴冲来,产生很高的局部压力,连续击打叶轮表面,这种高速、高压的水力冲击,叶片表面便因疲劳而剥蚀呈现麻点,蜂窝海绵状。这种汽化一凝结一冲击一剥蚀现象,就称为汽蚀现象。防止CYZ自吸式离心油泵汽蚀可以采用的方法:(1)提高离心泵本身抗汽蚀性能的措施:这些措施主要是靠设计与制造单位来实现的,例如可以改变叶轮的进口几何形状,采用双吸式叶轮,也可以采用较低的叶轮入口速度,加大叶轮入口直径。(2)适当增大叶片入口边宽度,也可以使叶轮入口相对速度减少。(3)采用抗汽蚀材料制造叶轮。(4)提高装置有限汽蚀余量,如增大吸入罐液面上的压力,合理确定几何安装高度,都可以提高泵的有效汽蚀余量。(5)减少吸入管路阻力损失,降低液面的汽化压力,都可以提高有效汽蚀余量。

舒心的羽毛
坦率的雪糕
2026-02-03 17:49:07

1、结构措施:采用双吸叶轮,以减小经过叶轮的流速,从而减小泵的汽蚀余量;在大型高扬程泵前装设增压前置泵,以提高进液压力;当气体到达高压区时,蒸汽凝结,气泡破裂,气泡的消失导致产生局部真空,液体质点快速冲向气泡中心,质点相互碰撞,产生很高的局部压力。

2、提高液体的密度。

输送密度越大的液体时泵的吸上高度就越小,当用已安装好的输送密度较小液体的泵改送密度较大的液体时,泵就可能产生汽蚀,但用输送密度较大液体的泵改送密度较小的液体时,泵的入口压力较高,不会产生汽蚀。

3、升高输送液体的温度。

当离心泵的进口压力小于环境温度下的液体的饱和蒸气压时,液体中有大量蒸汽逸出,并与气体混合形成许多小气泡;在泵的入口压力不变的情况下,输送液体的温度升高时,液体的饱和蒸气压可能升高至等于或高于泵的入口压力,泵就会产生汽蚀。

影响汽蚀现象产生的因素

汽蚀现象产生的本质原因是入口压力小于流体输送温度下的饱和蒸汽压。汽蚀现象主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处,例如流量大于设计流量时发生在叶片进口靠近前盖板的叶片正面处。

当叶轮入口处压强下降至被送液体在工作温度下的饱和蒸汽压时,液体将会发生部分汽化,生成的气泡将随液体从低压区进入高压区,在高压区气泡会急剧收缩、凝结,其周围的液体以极高的速度冲向原气泡所占空间,产生高强度的冲击波,冲击叶轮和泵壳,发生噪音引起震动。

满意的绿茶
优秀的世界
2026-02-03 17:49:07
预防汽蚀发生或减缓汽蚀破坏,可以从两方面着手:一方面从泵设计和制造考虑:改善叶轮进口入液条件,降低泵的NPSHr,使泵的NPSHr

低于装置汽蚀余量NPSHa,避免汽蚀发生;采用组织致密的高等级材质制造叶轮,提高泵的抗汽蚀破坏能力;另一方面从泵的使用条件考虑:通过合理系统设计和设备选型、正确操作,使泵不会发生汽蚀。现分述如下:

(1) 适当加大泵入口直径和叶轮入口直径,降低泵入口液体流速,降低NPSHr。或者直接采用双吸叶轮,因双吸叶轮相当于两个单吸叶轮的入口面积,同样流量条件进口流速可降低一倍。

(2) 将叶片头部背面修薄,改善叶片入口排挤,降低NPSHr。或加装诱导轮,使液体进入叶轮前增加了一定压力能。

(3) 泵在接近汽蚀的状态下工作,如采用组织致密的抗汽蚀材料(铜合金、不锈钢等) 制造泵叶轮可以延长叶轮寿命。如用压延的钢板焊接的叶轮较铸造的叶轮抗汽蚀能力强。也可以利用非金属涂料采用环氧树脂、尼龙、聚胺脂等对叶轮进行涂层处理。

(4) 管路系统设计时,泵的吸上高度尽可能低,条件许可就采用倒灌。配管时,适当缩短吸入管长度、增大吸入管径,在吸入路尽量减少不必要的阀门、弯头数量,以减少吸入管的管路损失。

(5) 泵选型时,遇到装置汽蚀余量低或介质易汽化时,泵尽可能采用低转速。

(6) 对易汽化介质,做好管路的保温降温,避免所输送液体的温度升高。

(7) 泵在运行过程中,应利用泵出口阀控制流量在合理的范围。泵偏大流量运行时最容易出现汽蚀现象。操作中,不允许用吸入管路阀门来调节流量。

(8) 泵出现汽蚀又无法改变其工艺条件时,可在泵入口加装一个喷嘴,利用泵出口压力,使其高压液体回馈,以增大泵入口压力,减小汽蚀的可能性。

妩媚的小松鼠
单薄的菠萝
2026-02-03 17:49:07
当叶片入口附近液体的静压力等于或低于输出温度下液体的饱和蒸气压时 液体将在该部分汽化 ,产生气泡 。含气泡的液体进入叶轮高压区后 ,气泡就急剧凝结或破裂 。因气泡的消失产生局部真空 ,此时周围的液体以及高的速度流向原气泡占据的空间 ,产生了极大的局部冲击压力。 在这种巨大冲击力的反复作用下 ,导致泵壳和叶轮被破坏, 这种现象称为气蚀。

合理的确定泵的安装高度可防止发生气蚀现象。

高挑的鞋子
优秀的盼望
2026-02-03 17:49:07
汽蚀是液力机械中常见的故障之一,由于进口池或管路设计不合理,以及未充分考虑大气压、温度、介质气化压力的变化等常常因为汽蚀而引起泵的过早失效。已经安装服役的泵几乎没有办法完全克服泵本身汽蚀性能差造成的汽蚀破坏(《泵手册》第一分册)。本文将主要介绍减轻在役泵汽蚀破坏的方法,这些方法在实际应用中均取得了明显的效果。一、汽蚀的产生原因汽蚀是由液体汽化引起的,液体分子逸出液体表面,成为气体分子的过程,称为“汽化”。液体的汽化程度与压力的大小、温度高低有关。溶解于液体中的气体,在压力和温度变化时也会释放出来,形成汽穴。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,在局部区域形成汽泡或汽穴;而在压力升高的地方汽泡突然被四周的压力压破,液流因惯性以极高的速度向汽泡的中心挤压,对设备造成水力冲击。这种微泡的产生、溃裂以及对过流表面产生物理和化学作用的整个过程称为汽蚀。如果液体中不含任何杂质,即使在压力很低时也不会发生汽蚀。国外的汽蚀研究者通过试验认为,超高纯水的抗拉强度(即产生空穴的极限)远远超过通常的金属材料的抗拉强度。但通常的液体中总是含气体或固体,这些杂质成为汽蚀核子,在一定条件下诱发空穴的发生。含砂水流由于水与砂的比重不同,砂粒运动轨迹与流线脱离,可能会加速汽蚀的发生。笔者在论文“泥浆泵的汽蚀及抗磨抗汽蚀材料”(《润滑与密封》1993)中进行了详细介绍。二、在役泵的汽蚀诊断方法泵的使用者通常无法利用制造厂流量一定时扬程的下降来判定汽蚀是否发生的方法。在役泵是否发生汽蚀,除在汽蚀破坏后观察法外可以采用(1)超声波法;(2)泵体外噪声法;(3)振动法等方法判断。观察法:破坏表面观察法是在事后观察方法,根据破坏的表面形状来进行判断。由于汽蚀、铸造气孔、冲刷磨损、腐蚀等均会造成金属表面形状与理想形状的不同。汽蚀破坏的金属表面通常显现蜂窝状,它是由局部高速水打击金属而使金属表面疲劳破坏,所以蜂窝孔一般是与外部相通的,大多数的坑槽与金属表面垂直。铸造缺陷的疏松往往深藏在金属内部,有时由于水流的冲刷将金属内部的疏松、气孔呈于表面而误认为是汽蚀,但当我们用机械的方法继续去处表面时会发现其内部仍有气孔。冲刷磨损痕迹往往出现与水流方向相同的沟槽,但要注意有时有水流旋涡。噪声法:泵体外噪声法比较简单,可以不与泵体接触。但由于噪声法受周围环境噪声的影响较大,当显示其强度最高时。一般水泵汽蚀已达到非常强烈的阶段,这时人耳已能通过强烈的汽蚀爆裂声判别汽蚀工况。因此,泵体噪声法不太适合现场监测汽蚀的发生。振动法:这种方法是通过加速度计探头测量泵体振动频率的一种方法,方法简单,但灵敏度较低。特别对于大泵,泵体刚度大。对泵内局部汽蚀引起的汽泡溃裂所产生的激振反应迟钝,同时,泵上振源较多。由于汽蚀引起的振动常被掩没在其它振动之中。因此,振动法只适宜作为现场监测汽蚀的辅助手段。超声法:超声波法测量汽蚀方法简单,调试方便,且不受其它环境噪声的干扰,对汽蚀的发生和发展敏感性强。因此,作为泵站现场监视汽蚀是一种比较理想的方法。另外,抚顺石油学院化工机械研究所赵会军介绍了用电测法预测离心泵汽蚀性能(《石油化工高等学校学报》1997)。三、减轻在役泵的汽蚀破坏的方法1、进水池在使用现场,对发生汽蚀(包括其它故障)的泵查看进水池的流动状况是十分必要且又方便易行的。如果池表面能看到强力的旋涡,应该考虑加破涡板。另外,管口与进水池的几何尺寸也应注意。如:管口离池壁的距离是否合适,是否有气泡进入泵吸入管。注意水池水位是必要的,抬高进水池水位可以减轻甚至彻底阻止汽蚀的发生。解台泵站对进水口改造,汽蚀浸蚀减少45%左右。齐鲁石化的刘克旺、孙敬河等人在循环泵进口添设破涡板后泵的汽蚀不再发生且流量从不稳定的8500、8000m3/h分别提高到稳定的9700、8200m3/h。2、进水管路进口管路的设置除应该尽量使管路损失小(如尽量少的弯头和不必要的阀门)外,让进水管不得有高于泵进口的部位以防止管内积气。1995年赤水天然气化肥厂在循环泵进口橡胶膨胀接为1000mm,而管子为800mm。为此增加了放气管,解决了由于其阻造成的压力下降,解决了汽蚀问题。3、调整泵流量新疆电力设计院王卫东建议由于我国采用的原阻力计算公式来源于原苏联,其阻力计算值比实际的大,阻力计算宜采用新公式进行。否则,泵在大流量运行容易发生汽蚀(《西北电力技术》2000)。在水泵设计选型与实际有一定的偏差时,水泵产生汽蚀和经济运行可以通过切削叶轮来加以解决,以期达到消除汽蚀,运行经济的目的,实践证明,这种方法确实行之有效。4、利用引射结构喷射装置在原理上相当于液-液喷射泵。在泵的出口处引出一高压水引到如图所示的高压水室内,高压水通过环形喷嘴进入泵的吸入管内。高压水与吸入管内的水混合、交换能量,混合后的混合水能量相对于原吸入管的水能量增加,从而满足泵进口所必须的汽蚀余量。浙江大学的吴昱等人对此进行了介绍(浙江大学硕士学位论文2003年),论文中介绍了引射装置的引回流量宜控制在2%-5%之间。张德煌老先生在长沙曾采用过类似方法对100口径的多级泵进行试验,取得了明显效果。其方法是用1/2的管将平衡盘后的水引至泵进口,泵系统的装置汽蚀余量降低了0.5~0.8m。武汉大学的郭迪龙等人介绍了一种射流-离心泵装置。这种装置相当于射流泵与离心泵串联工作,对大吸程的泵十分有效,但一般不适合于在役泵的改造。5、进口补气补气的方法并不能防止汽蚀空穴的产生,但适当补气会减轻空穴破裂时产生对流道边壁的破坏,补入的气体象一层保护流道边壁的海绵。这种方法在水轮机等中普遍采用,但向泵内补气由于补气量难于掌握使用非常少。武汉水利电力学院孙寿、颜锦文对补气防水泵汽蚀进行了研究并取得了一定效果,但同时指出:补气防治水泵汽蚀,技术性很强,只有补气流量、补气位置和补气方式洽当,才能取得好的效果。否则,会使泵的流量、扬程和效率下降很多,引起不良后果。6、采用抗汽蚀材料不同的材料抗汽蚀能力有十分明显的区别。影响材料抗剥蚀能力的因素很多,通常具有高硬度和高弹性的材料抗剥蚀能力较强。国外推荐低碳铬镍合金钢,如13Cr4N作为在汽蚀状态下工作的水力机械材料,具有较好的抗剥蚀性能。郑州机械研究所陈岩进行了不同材料抗汽蚀性能的比较(《热加工工艺》2000),结果如下表材料HT200QT400-15QT600-3ZG230-450ZG310-570失重mg961.4737.1481.1241155试验时间h15材料ZG40CrZG20SiMnZG1Cr18Ni9TiZG0Cr13Ni4MoZG0Cr13Ni6Mo失重mg139.9122.271.540.225.2试验时间h1530长沙水泵厂的朱旭仁提供的资料,其材料与汽蚀失重见下表材料HT200QT600-3ZG310-57018-8失重148.376.53316.3对无法避免汽蚀时采用耐汽蚀材料是有效的。如:凌城泵站对7#和10#机组,叶轮室将原铸钢换为不锈钢,运行几年未发现其实破坏斑痕。武定门站将铸铁改为QT42-10,使用寿命提高2倍以上。解台泵站用铸铁与铜对比,铜叶轮抗汽蚀效果明显。7、叶轮保护层对叶轮涂层的方法比较常用,非金属涂料涂敷采用环氧树脂、尼龙粉、聚胺脂等。在流道表面堆焊合金或喷涂合金的方法在对汽蚀破坏也取得了一定效果,如不锈钢焊条堆焊法、不锈钢板镶焊修补法、合金粉末喷焊。就非金属和合金(包括不锈钢)的几种方法比较。非金属涂层方式经济,但应当对其操作工艺严格控制,以防止涂层脱落的现象。采用合金粉末喷焊效果好但成本高,且有些地方可能无法进行。如:某泵站采用金属合金粉末喷焊处理的叶片,取得了较好的抗汽蚀效果,使用寿命可延长。中国长城铝业公司郝百顺用H-l对泵叶轮进行了耐汽蚀磨损涂层的应用研究。引滦工程大张庄泵站原泵汽蚀严重,采用柔软陶瓷复合材料修复经过4年4000h的输水检查未发现汽蚀破坏。水利部松辽委察尔森水库管理局王明臣介绍了TS216耐磨修补剂在水轮机转轮抗气蚀中的应用效果良好。连云港币自来水公司马援东采用激光熔覆方法对铸铁和铸钢处理后,抗汽蚀性能分别是喷焊工艺处理的1.3和1.5倍。8、修整叶片头部修整叶轮头部对降低叶片进口的水流速度,减小叶轮进口排挤,提高泵的抗汽蚀能力是有效的。实践证明尽管进口叶片减薄,在汽蚀环境中常常叶轮寿命更长。一般修整叶轮头部是叶片头部背面修薄,在靠近叶轮前盖板多修一些。2001年长沙水泵厂对流量5040m3/h,扬程17.5m的泵进行修整(同时对喉部修整),经试验发现汽蚀余量下降0.5左右。