无油爪式真空泵优势?
无油爪式真空泵优势:
结构紧凑,抽速快,效率高。无油运行,设备本身不产生制造污染,噪音小,性能稳定,无需定时保养,节省成本。
泵腔与泵爪含特殊涂层,防腐耐磨,超强的粉尘和腐蚀性气体处理能力,持久耐用,提高生产力。
1、泵腔内不含油,排气口不喷油,对被抽容器和环境均不产生污染;
2、转子悬浮于泵腔内,转子间及其与泵腔间均无摩擦,转子转速高;
3、能抽除腐蚀性、有毒性、放射性及含有粉尘的气体,雅之雷德机电科技无油爪式真空泵适于用作气体输送泵。
真空泵根据压力分为初真空、低真空、中真空、高真空和极高真空,根据形式有液环真空泵、水喷射真空泵、大气喷射器、蒸汽喷射器、罗茨真空泵(不能在大气压下启动,必须配前级泵,多以机组的形式出现)、气冷式罗茨真空泵、旋片真空泵、隔膜真空泵、漩涡真空泵、滑阀真空泵、干式螺杆真空泵、干式爪式真空泵、扩散泵、分子泵等;液环真空泵(因为其工作液大多使用水做密封液所以通常被称作水环泵)的工作原理:进入泵体中的液体,在 叶轮的驱动下,形成与泵壳同心的液 环,液环与偏心安装的叶轮轮毂形成 了月牙形空间,这个空间被叶轮上的 叶片分隔成若干个小气室,随着叶轮 旋转,前半转时,小气室容积由小变 大,气室内形成真空,气体被吸入,后 半转时,小气室容积由大变小,气体 被压缩,当达到排气压力时,气体被 排出泵外,这样一个连续的过程 上海尼可尼真空部
采用干式真空泵,泵内不仅不存在润滑油,而且亦不存在废液处理的问题。但是泵腔内没有油,就使得泵腔内部的间隙无法保持密封,而且还失去了用于控制温度的传热介质,这对干式真空泵带来很大的挑战。
早期的干泵是由几级罗茨型转子或几级爪型转子串联而成,它们在泵腔内没有任何接触,用同步齿轮带动二个平行的转子轴,由于泵腔内没有任何液体,所以内部间隙要尽可能保持很小,以减少气体的返流。但是这个很小的间隙对于工艺颗粒的堆积显得十分敏感,目前解决这个问题的办法就是:从泵的入口充入惰性气体将它冲刷掉,或者用惰性气体来稀释可凝性的腐蚀气体。
干泵在半导体行业应用成功,亦激励干泵制造商将干泵引入化学工业,虽然干泵价格昂贵,但运行成本较低,特别是没有废液处理问题,对环境和健康十分有利。目前各种类型的干泵很多,包括涡旋泵、隔膜泵、干式旋片泵、罗茨型干泵、爪式干泵和螺杆真空泵。在化工行业应用中占主导地位的是罗茨型干泵、爪式干泵和螺杆真空泵。
1 罗茨型干泵
罗茨型干泵是属于较大型的干式真空泵,在化学工业有着广泛应用。该泵是由三级三叶型罗茨转子串联组成,它们装在同一根轴上,各级转子之间由中隔板隔开,形成各级泵腔,上一级排气口连到下一级进气口,各级串联进行抽气。各级转子的直径和形状是相同的,各级转子的宽度向高压侧方向变窄,但是这种设计均需要级间冷却,亦即上一级排出的气体通过热交换器后冷却后再进入到下一级的入口,如图8所示。这种三叶型的罗茨型干泵虽然可以减少气体返流,但是被抽气体要经过曲折路程才能排出到泵外,容易造成工艺物料堆积在泵腔内,而且颗粒杂质也不容易直接排出到泵外。罗茨型干泵可以从大气抽到10Pa,抽速为(36~60)升/秒。
图8 罗茨型干泵
2 爪式干泵
爪泵在1930年就己经研究成功,并首次用于压缩机行业,这种爪式转子的特点是在高压下具有高的压缩比。爪式转子还具有两个功能:一是用来截获、输送以及压缩气体,另一个就是像阀门一样,在适当的时间打开和关闭吸气口和排气口。目前这种泵的设计结构大都是由一级罗茨转子与三级爪式转子串联而成,罗茨转子作为高真空级,爪形转子作为压缩排气级,如图9所示。
图9 单爪式泵
这种爪式干泵早期应用于半导体的溅射、刻蚀、离子注入及PCVD薄膜制备等领域时,由于在工艺过程中会生成大量微小颗粒或反应生成的腐蚀性介质,可以通过向泵口引入惰性气体进行清洗,以防止微小颗粒在泵腔内沉积,同时亦降低腐蚀性气体的浓度。爪型泵己经在化工行业的蒸发、蒸馏、干燥、浓缩等领域应用。这种爪型泵的极限压力为(1~10)Pa,抽速为(25~140)L/s。
3 螺杆真空泵
螺杆真空泵是20世纪90年代初出现的一种理想的泵种,具有抽速范围宽广、结构简单紧凑、泵腔内无摩擦组件、能耗低、无废液排放以及运行成本低等一系列优点,因而在半导体、光伏产业、化工、制药、石化、空间模拟、低压风洞等领域到广泛应用。
螺杆真空泵的工作原理:由一对同步齿轮带动逆向旋转的螺杆,在螺杆与螺杆之间、螺杆与泵腔之间均有一定的间隙,没有任何金属与金属之间的接触。于是螺杆在旋转过程中就将被抽气体从进气口吸入并排出到排气口,见图10。
图10 螺杆真空泵断面图
早期的螺杆真空泵是等螺距,为了降低能耗、降低泵腔内的温度,又开发了变螺距的螺杆真空泵。其中一种螺杆是由二段螺距大小不等的螺杆拼接而成,另外一种就是螺距连续变化的螺杆真空泵,螺杆是由一个整体材料加工制作而成,各种不同的螺杆设计见图11所示。
图11 各种不同的螺杆设计
变螺距真空泵的最大优点就是比等螺距螺杆真空泵节能30%,排气温度亦较低。图12和图13分别为等螺距与变螺距的P-V图。
图12 等节距螺杆P—V图
图13 变节距螺杆P—V图
与罗茨型干泵和爪式泵相比,螺杆真空泵被抽气体在泵内的路程很短(见图14、15、16),很少受到扰动,可以迅速排出,因而微小的颗粒杂质不易积累在泵内。
图14 多级罗茨式
图15 罗茨+爪式
图16 干式螺杆泵
另外,螺杆真空泵的抽速特性较好,有效工作压力范围很宽,在大气到100Pa时仍有较高抽速(见图17)。
图17 抽速特性比较
由于螺杆真空泵大多数是用于抽除腐蚀性或危险性气体,为了防止泵腔和螺杆被腐蚀或生锈并延长泵的使用寿命,根据不同的应用可选择下列不同的涂层:
PTFE(聚四氟乙烯)涂层:
●耐化学性能好;
●涂层寿命较短;
●熔点低于300℃;
●耐磨性较差。
NIFA涂层:
●2个涂层(Ni+PFA),第一层Ni(15~20)μm,第二层PFA(25~35)μm(可溶性聚四氟乙烯);
●对所有的化学物质均具有良好的耐腐蚀性;
●耐机械划伤的性能好;
●即使PFA涂层磨损,仍然有Ni涂层保护基体材料。
NIFLON涂层:
●1个涂层(PTFE溶于化学镀Ni)15~20μm;
●良好的耐磨性;
●对基材具有良好的结合力;
●对极大多数化学物质具有良好的耐蚀性;
●耐机械划伤;
尽管螺杆真空泵有涂层保护,但是仍然要避免腐蚀性介质冷凝在泵内,因此正确的操作使用和日常维护仍然十分重要——
在启动螺杆泵以前,首先要从泵的入口充入惰性气体,运行半小时,使泵腔内的温度升高,以防止被抽气体冷凝在泵腔内;
在螺杆泵停机以前,亦要从泵的入口充入惰性气体,运行半小时,以彻底清除泵腔内的残余物质;
如果工艺物质堆积在泵腔内,造成再启动困难或启动电流过大,则需要在停泵情况下,关闭主阀,打开排气口,用水蒸汽进行冲刷,直到泵可以灵活转动为止;
最后,由于螺杆泵在化工行业使用工况比较恶劣,必须根据使用说明书的要求进行日常维护。
结语
液环泵结构简单,运动部件少,操作、维护都十分简便,而且价格亦较低廉。螺杆真空泵虽然价格比较昂贵,但性能十分优越,运行费用亦低,不存在废液排放问题,既节能又环保。所以上述两种真空泵最适合于化工工艺应用。
1)低压化学气相沉积中的多晶硅制备工艺中;
2)半导体刻蚀工艺。在这些生产工艺中往往用到或生成腐蚀性气体和研磨微粒;
3)除半导体工艺外的某些产生微粒的工艺,不希望微粒混入泵油中,而希望微粒排出泵外,则用一定型式的干式机械真空泵可以满足要求;
4)在化学工业、医药工业、食品工业中的蒸馏、干燥、脱泡、包装等,要防止有机溶剂造成污染,适合用干式真空泵;
5)用做一般无油清洁真空系统的前级泵,以防止油污染。近年来,干式机械真空泵得到迅速的发展,国外多家大真空公司都研制出了新型的干式械真空泵。国内的许多单位也一直在进行干式机械真空泵的开发研制工作,如东北大学、沈阳真空技术研究所、上海真空泵厂等。目前,干式机械真空泵主要分为接触型及非接触型。接触型的干式泵有叶片式、凸轮式、往复活塞式、膜片式等,这类泵的速度较低,适用于小容量高压缩比(单级压缩比)。非接触型的干式泵有罗茨型、爪型、螺杆型、涡旋型等,其速度较高,适用大容量,低压缩比(指单级压缩比)。不同类型的干式泵具有各自的特点。使用时可根据不同的用途加以选择。
耙式真空干燥机的核心部件是夹层真空干燥筒,在筒内有活动耙爪(有的型号连耙爪都可以加热,干燥效率更高)。干燥时,旋转的干燥筒夹层内通入蒸汽加温,需要干燥的物料在筒内不断的被耙爪搅拌,增加受热面积利于水分蒸发。筒内气压远低于物料水分蒸发时的气压,又加速了物料水分的蒸发,所蒸发水分被真空泵抽走。
因为干燥筒温度可精确控制,因此耙式真空干燥机非常适合用于对温度敏感的膏状、糊状、颗粒状、粉状、纤维状物料进行干燥。而且可用于对易燃、易爆的危险物料干燥。如果在抽气工序中加入回收装置,还可以对需要进行有机物挥发回收的物料进行干燥。
耙式真空干燥机被广泛的运用在食品、医药、饲料、化工等行业。目前国内生产的耙式真空干燥机最大的一次可以干燥6000升物料。筒内气压低至0.01兆帕。干燥后的物料含水率低于0.01%。
某主给水泵电机因非驱动端轴承内一固定螺栓断裂且轴瓦间隙过大(油膜涡动)导致振动超标,缺陷处理完成后连续启停时没有按照规程操作(连续启停间应间隔0.5~1小时以上,以均匀热场),导致塑性弯轴。
解体检查,转子中间部位弯度约0.5mm。由于受工期限制,直轴困难。经专家讨论,进行动平衡,动平衡块加在轴端的风扇叶轮槽内(原先已经加装了约5kg,后又加装了3kg)。动平衡机上显示残余动不平衡量小于许用动不平衡量。动平衡合格。
回装再次启动,振动比动平衡前更大,且频谱显示故障特征仍为动不平衡。再次解体检查,安装过程满足要求。原因出在哪呢?再次查找该类型电机的技术说明书,并联系厂家。发现犯了一个致命错误,该电机工作转速约2981Rpm,超过了该转子的一次临界值。当时为了安装方便,动平衡块都集中在了轴的两端,在低速情况下(500rpm),整个转轴是刚性的,根据动平衡理论是能实现动平衡的。但到了工作转速,转子产生了一阶变形,原有的配重(刚好是同向配重),进一步加剧了变形量(向中间拱起)。导致振动比动平衡前更严重。
解决措施:取消为消除塑性弯轴而加装的配重块,加工同等质量的长纤丝(方便安装在线包槽中),按照原有角度,从轴的两端移至中间部位)。
完成后,再次启机,振动合格,工作正常。
转子的静平衡和动平衡
1、定义
1)静平衡
在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
2)动平衡
在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
2、转子平衡的选择与确定
如何选择转子的平衡方式,是一个关键问题。其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静平衡要比动平衡容易做,动平衡要比静动平衡容易做,省功、省力、省费用。那么如何进行转子平衡型式的确定呢?需要从以下几个因素和依据来确定:
1)转子的几何形状、结构尺寸,特别是转子的直径D与转子的两校正面间的距离尺寸b之比值,以及转子的支撑间距等。
2)转子的工作转速。
3)有关转子平衡技术要求的技术标准,如GB3215、API610第八版、GB9239和ISO1940等。
3、转子做静平衡的条件
在GB9239-88平衡标准中,对刚性转子做静平衡的条件定义为:"如果盘状转子的支撑间距足够大并且旋转时盘状部位的轴向跳动很小,从而可忽略偶不平衡(动平衡),这时可用一个校正面校正不平衡即单面(静)平衡,对具体转子必须验证这些条件是否满足。在对大量的某种类型的转子在一个平面上平衡后,就可求得最大的剩余偶不平衡量,并除以支撑距离。如果在最不利的情况下这个值不大于许用剩余不平衡量的一半,则采用单面(静)平衡就足够了。从这个定义中不难看出转子只做单面(静)平衡的条件主要有三个方面:一个是转子几何形状为盘状;一个是转子在平衡机上做平衡时的支撑间距要大;再一个是转子旋转时其校正面的端面跳动要很小。
对以上三个条件作如下说明:
1)何谓盘状转子
主要用转子的直径D与转子的两校正面间的距离尺寸b之比值来确定。在API610第八版标准中规定D/b<6时,转子只做单面平衡就可以了;D/b≥6时可以作为转子是否为盘状转子的条件规定,但不能绝对化,因为转子做何种平衡还要考虑转子的工作转速。
2)支撑间距要大
无具体的参数规定,但与转子校正面间距b之比值≥5以上均视为支撑间距足够大。
3)转子的轴向跳动
主要指转子旋转时校正面的端面跳动,因为任何转子做平衡试都是经过精加工的,加工后已保证了转子的孔与校正面之间的行为公差,端面跳动很小。
根据上述转子做单面(静)平衡的条件,再结合有关泵方面的技术标准(如GB3215和API610第八版),只做静平衡的转子条件如下:
1)对单级泵、两级泵的转子,凡工作转速<1800转/分时,不论D/b<6或D/b≥6只做静平衡即可。但是如果要求做动平衡时,必须要保证D/b<6,否则只能做静平衡。
2)对单级泵、两级泵的转子,凡工作转速≥1800转/分时,如果D/b≥6只做静平衡即可。但平衡后的剩余不平衡量要等于或小于许用不平衡量的1/2。如果要求做动平衡,要看两个校正面的平衡是否能在平衡机上分离开,如果分离不开,则只能做静平衡。
3)对一些开式叶轮等转子,如果不能实现两端支撑,只做静平衡即可。因为两端不能支撑,势必进行悬臂,这样在平衡机上做动平衡很危险,只能在平衡架上进行单面(静)平衡。
4、转子做动平衡的条件
在GB9239标准中规定:"凡刚性转子如果不能满足做静平衡的盘状转子的条件,则需要进行两个平面来平衡,即动平衡。只做静平衡的转子条件如下(平衡静度G0.4级为最高精度,一般情况下泵叶轮的动平衡静度选择G6.3级或G2.5):
1)对单级泵、两级泵的转子,凡工作转速≥1800转/分时,只要D/b<6时,应做动平衡。
2)对多级泵和组合转子(3级或3级以上),不论工作转速多少,应做组合转子的动平衡。
补充:
在《离心泵检验和试验规定》,对平衡试验做了如下规定:
3.5 平衡试验
3.5.1 主要运转部件如叶轮平衡鼓等应单独做静平衡检验
3.5.2 除静平衡外若属下列工况应做动平衡检验
(1) 设计流量超过55m3/h且叶轮直径大于150mm 泵设计转速大于1500r/min
(2) 两级或多级泵且泵设计转速大于1500r/min
(3) 泵设计转速大于3000r/min
3.5.3 对于立式泵应通过手动盘车利用千分表在填料箱或机械密封处测量轴或轴套的径向跳动量指示读数不应超过60μm
3.5.4 转子装配和平衡修正的顺序应遵照GB9239 且应达到G2.5以上。