罗茨真空泵的消除故障
极限压力不高
(1)管道、系统漏气
(2)泵部分漏气
(3)前极泵极限压力下降
(4)润滑油太脏或牌号不符
(5)油封磨损
(6)溢流阀处漏气
(1)系统检漏
(2)对泵检漏
(3)修理或更换前级泵
(4)调换润滑油
(5)调换油封
(6)对溢流阀进行清理
抽速不足
(1)管道通导能力不够
(2)前级泵抽速下降
(3)溢流阀处漏气
(1)增大管道通导能力
(2)修理或更换前级泵
(3)对溢流阀处进行清理
电动机过载
(1)入口压力过高
(2)转子端面与端盖单面接触
(3)前级泵返油进泵腔
(4)溢流阀卡住,使出口过高
(1)调整、控制入口压力
(2)调整转子端面间隙
(3)装置防返油设备
(4)对溢流阀进行清理
过热
(1)选择的前级泵抽速不够,造成压缩比过大
(2)入口压力过高
(3)冷却不良
(4)齿轮箱润滑油过高
(5)转子与泵壳接触
(6)齿轮、轴承、油封润滑不良
(1)重新选用前级泵
(2)调整、控制入口压力
(3)畅通冷却
(4)调整油量
(5)修整
(6)保证油量适当,润滑良好
声音异常
(1)装配不良
(2)导向齿轮与转子位置偏移使转子相碰
(3)入门压力过高
(4)过载或润滑不良造成对齿轮的损伤
(5)轴承磨损
(1)重装
(2)调整位置,保证间隙
(3)调整、控制入口压力
(4)调换齿轮
(5)调换轴承
轴承、齿轮
早期磨损严重
(1)润滑油不良
(2)润滑油不足
(1)调换润滑油
(2)补充润滑油
罗茨泵常见故障与排除及拆装
如罗茨泵(机械增压泵)机组经运转一段时间后,罗茨泵内产生异常杂音,则可能有以下原因:
1、罗茨泵的启动压力太高,造成泵的机件过热而受损(有些机械增压泵经特殊设计后,也可以在大气压下启动)。
2、在生产工艺中产生的较大的磨耗性粒子进入罗茨泵内部造成机件磨损。
3、泵的安放位置不对,例如:倾斜置放。泵内的润滑油的油量不适合。
以上各原因均会导致罗茨泵的机件(转子、定子、轴承与齿轮等)精密度变差或受严重污染,从而使罗茨泵在运转中产生异常杂音。
当发现泵在运转中产生异常杂音后,应立即检查泵的启动压力是否符合规定值,可用电流表检查泵电机的输入电流是否合乎额定值,有无异常的高或低。还应检查泵内润滑油的情况及泵的安放位置是否合适。发现问题后,要立即采取相应的措施解决。
罗茨真空泵工作时转子与转子,转子与泵体互相不接触,因此没有直接磨损,但由于间隙很小(一般0.10~0.25 mm),经长期运转后传动齿轮磨损,当齿侧间隙大于转子间最小间隙时,将产生相碰而发生故障,此时则应更换齿轮。一般在运转一年则应进行大修一次,检查齿轮及轴承的磨损情况,检查密封装置,更换密封圈(环),检查转子腐蚀情况,转子结垢情况,泵体内表面腐蚀情况和结垢情况。清洗测量磨损超出规定尺寸时,应调整间隙或更换零件。
泵的拆装程序如下:
1、放出润滑油及冷却水;
2、拆卸联轴器和电机;
3、拆卸旁通管路和旁通阀;
4、拆轴承;
5、拆卸前后端盖及密封装置;
6、拆转动齿轮;
7、拆转子。
拆装时的注意事项如下:
1、安装底座时必须认真调整水平,否则将影响转子与泵体两端的间隙;
2、拆装零部件不能用铁锤敲打;
3、拆装时注意密封面,不得有任何划痕和碰伤;
4、平面密封使用室温硫化橡胶时,要涂布均匀,不能过薄也不能太厚;
5、转子装后应认真调整间隙,按规定间隙调整,发现超出规定时应取出重新修理,但修理后必须进行动平衡调试,动平衡合格后再重新组装。 罗茨真空泵压缩气体所需的功率与压差成正比,一旦气体压差过高,泵就可能出现过载现象,造成电机绕组烧损。解决泵过载问题的方法主要有以下几种:
(1) 采用机械式自动调压旁通阀。 旁通阀安装在罗茨真空泵的出口和入口之间的旁通管路上。此阀控制泵出入口之间的压差不超过额定值。当压差达到额定值时,阀门靠压差作用自动打开,使罗茨真空泵出口和入口相通,使出入口之间的压差迅速降低,这时罗茨真空泵在几乎无压差的负荷下工作。当压差低于额定值时,阀自动关闭,气体通过罗茨真空泵内由前级泵抽走。带有旁通溢流阀的罗茨真空泵可以与前级泵同时启动,使机组操作简单方便。
(2) 采用液力联轴器 采用液力联轴器也能防止泵的过载现象发生,使泵可以在高压差下工作。液力联轴器安装在泵和电动机之间。在正常工作状态下,液力联轴器由电动机端向泵传递额定力矩。罗茨真空泵的最大压差由液力联轴器所传递的最大转矩来决定,而液力联轴器可传递的最大转矩由其中的液体量来调节。当泵在高压差下工作或与前级泵同时启动时,在液体联轴器内部产生了转速差即滑动,只传递一定的力矩,使泵减速工作。随着抽气的进行,气体负荷减小,罗茨真空泵逐渐加速至额定转速。
(3) 采用真空电气元件控制泵入口压力 在罗茨真空泵的入口管路处安置真空膜盒继电器或电接点真空压力表等压力敏感元件。真空系统启动后,当罗茨真空泵入口处压力低于给定值(泵允许启动压力)时,压力敏感元件发出信号,经电气控制系统开启罗茨真空泵(如真空系统中装有罗茨真空泵旁通管路,则同时关闭旁通管路阀门)。若泵入口压力高于规定值时,则自动关闭罗茨真空泵(或同时打开泵旁通管路阀门),从而保证了罗茨真空泵的可靠运转。 随着罗茨泵应用的日益增多,设备在运行过程中由于受到高温、高压、强腐蚀、气蚀冲刷等恶劣环境的影响,经常出现磨损、腐蚀、泄漏等现象,制约着企业的正常生产,甚至导致火灾、爆炸、污染等严重安全事故。同时,罗茨泵故障所带来的意外停机停产也影响着生产的效率和产品的质量,加大了企业的成本投入。罗茨泵常见故障主要分为以下两类:
轴承位磨损
传动部位磨损是罗茨泵普遍存在的问题,并且数量较大,损坏频繁,其中包括轴承位、轴承座、轴承室、键槽及螺纹等部位。传统的补焊机加工方法易造成材质损伤,导致部件变形或断裂,具有较大的局限性;刷镀和喷涂再机加工的方法往往需要外协,不仅修复周期长、费用高,而且因修补的材料还是金属材料,不能从根本上解决造成磨损的原因。
当代最新方法是采用高分子复合材料,其具有超强的粘着力,优异的抗压强度、耐磨性和抗腐蚀性等综合性能。采用2211F高分子复合修复材料在传动部位磨损尺寸相对较小的情况下可以现场免拆卸修复,既避免机械加工,又无补焊热应力热影响,修复厚度也不受限制,同时产品所具有的耐磨性及金属材料不具备的退让性,确保修复部位百分百的接触配合,降低设备的冲击震动,避免磨损的可能性,并大大延长设备部件(包括轴承)的使用寿命,为企业节省大量的停机时间,创造巨大的经济价值。
修复步骤:
1、模具加工:制作标准对开模具
2、表面处理:去油、打磨、清洗,确保表面干净、干燥、结实。
3、调和材料:比例准确,调和均匀。
4、涂抹材料:确保粘接、填实及厚度。
5、安装模具:涂刷脱模剂,安装固定,确保多余材料被挤出。
6、脱模:固化后,拆卸模具将多余材料清理干净,材料不可敲击,可通过磨光机、锉刀等工具清除,达到安装要求。
腐蚀、冲蚀
金属腐蚀的形态,可分为全面(均匀)腐蚀和局部腐蚀两大类。前者较均匀的发生在设备的全部表面,后者只是发生在局部。例如孔蚀、缝隙腐蚀、晶间腐蚀、应力腐蚀破裂、腐蚀疲劳、氢腐蚀破裂、磨损腐蚀、脱层腐蚀等。
采用美嘉华高分子复合材料实施表面有机涂层防腐是当前行之有效的防腐蚀措施之一。表面粘涂保护可广泛应用于磨蚀、气蚀、腐蚀部位的修复和预保护涂层。其具有良好的耐化学性能及优异的力学性能和粘接性能。与传统的压力容器焊接修补相比,具有施工简便、成本低、安全性能,修复效果好的特点。
修复步骤:
1、表面处理:彻底清除表面氧化层,用丙酮将表面清洗干净。
2、调和材料:严格按照比例进行调和,并搅拌均匀,直到没有色差。
3、涂抹材料:先薄薄涂抹一层材料,要确保粘接及完全覆盖,再将材料均匀的涂抹到修复表面,达到要求的修复厚度即可。
4、固化:24小时/24℃(材料温度),材料温度每提升11℃,固化时间缩短一半,但提升温度不得超出材料的承受温度。
5、安装及注意事项:按照装配要求进行安装,修复保护的材料应避免受外力的敲击或撞击,如果材料影响装配,可采用打磨的方法处理,千万不可敲击,避免损伤其他材料。
罗茨真空泵运行稳定,噪音低,振动小,极限真空高。泵的传动部件采用坚固的防反冲结构,因此泵可以在高压汽车下长时间运行。即可在短时间内达到最佳真空度。因此,在泵腔中没有滑动部件,不需要油润滑,并且防止了油蒸汽对系统的污染。启动快,功耗低,运行和维护成本低,抽气速度高,效率高,对抽气中所含的少量水蒸气和灰尘不敏感,在100至1Pa的压力范围内抽气压力率大。罗茨真空泵运行平稳,具有抽速大的优点。
推荐你用高分子复合材料来解决泵的气蚀问题。
高分子复合材料是通过高分子聚合物、陶瓷粉末和碳纤维等多种材料复合而成的双组分或多组分的材料,是在高分子化学、有机化学、胶体化学和材料力学等学科基础上发展起来的高技术学科。其主要优点是:修复保护时工作温度低,这就克服了堆焊及喷熔工艺引起的热应力变形,施工过程简单;由于它的特殊分子结构赋予的高弹性,适应交替变形和温度的变化等性能,确保材料的吸震性、耐磨性的提高,可以抵抗大多数环境下的磨损、冲蚀等工况。高分子材料更具备优异的防腐性能,抗多数低温的有机酸和无机酸的腐蚀,可大大延长部件使用寿命。其高密度的分子量及光滑表面,不但提高抗气蚀的能力,还可以提高泵效。
离心泵气蚀现象怎么解决:
提高离心泵本身抗气蚀性能的措施
(1)改进离心泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。
(2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。
(3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。
(4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。
(5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。
提高进液装置有效气蚀余量的措施
(1)增加离心泵前贮液罐中液面的压力,以提高有效气蚀余量。
(2)减小吸上装置泵的安装高度。
(3)将上吸装置改为倒灌装置。
(4)减小离心泵前管路上的流动损失。如在要求范围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。
气蚀问题:
泵在运转中,若其过流部分的局部区域的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡。当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次。气蚀可破坏金属表面的保护膜,使腐蚀速度加快;金属表面在这种冲击力的多次反复作用下,金属发生疲劳脱落,使表面出现小凹坑,进而发展成海绵状,严重时会将壁厚击穿。
解决方案:
建议采用高分子复合材料来解决,如福世蓝的128L自流平高聚物陶瓷复合材料,其高密度的分子量及光滑表面,不但提高抗气蚀的能力,还可以提高泵效。由于它的特殊分子结构赋予的高弹性,适应交替变形和温度的变化等性能,确保材料的吸震性、耐磨性的提高,可以抵抗大多数环境下的磨损、冲蚀等工况。