真空泵最大压力有多少公斤?
240公斤。
真空泵是指利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。通俗来讲,真空泵是用各种方法在某一封闭空间中改善、产生和维持真空的装置。
按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体捕集泵和气体传输泵。其广泛用于冶金、化工、食品、电子镀膜等行业。
常用真空泵包括干式螺杆真空泵、水环泵、往复泵、滑阀泵、旋片泵、罗茨泵和扩散泵等,这些泵是我国国民经济各行业应用真空工艺过程中必不可少的主力泵种。近年来, 伴随着我国经济持续高速发展,真空泵相关下游应用行业保持快速增长势头,同时在真空泵应用领域不断拓展等因素的共同拉动下,我国真空泵行业实现了持续稳定地快速的发展。
干式真空泵的定义
干式真空泵很早就出现了,但没有明确的定义。就代替油封式机械泵来说,一般通用的说法是:
能在大气压到10-2Pa
的压力范围内工作在泵的抽气流道(如泵腔)中,不能使用任何油类和液体、排气口与大气相通,能连续向大气中排气的泵,
即称为干式真空泵(也称为无油真空泵)。干式真空泵的分类
现在市场上提供的干式泵种类很多。就其基本原理来分,
只有两类,
即:
①
容积式的无油真空泵,
例如多级罗茨泵、爪型泵、往复式活塞泵、螺杆式泵和涡旋式泵等。这种干式泵的极限压力一般为0.1~10Pa,
抽速为0.01~
0.04m
3?s。
②
动量传输式的无油真空泵,如涡轮式无油泵。排气侧与大气相接,
在连续流状态下压缩比较高。它是一种粗抽泵,
可从大气压抽到1022Pa。在结构上采用径向流和周向流泵的复合式结构,多级串联抽气。这种涡轮式泵的极限压力约为10-2Pa,
抽速为0.02~0.15m
3?s。牵引型干式泵也属于动量传输式的干式泵。
这些干式泵和油封式机械泵相比,
达到同样的极限压力,
其残余气体成分则全然不同,经分析结果明,
油封泵的残余气体,
CnHm
气体(碳氢化合物气体)为其主要成分,
而干式泵的残余气体为空气的组成成分。这就证实了干式泵的抽气不再有油的污染了。
有些干式泵在结构设计上,
如泵的传动齿轮和轴承等仍在使用润滑油,
也有用合成油,
如PFPE
油和其油脂等,并采取一定的措施使油蒸汽在泵腔内不存在,
严格来说不是全无油的泵,
但经分析,
这种合成油的成分在泵入口处是微乎其微的,并无影响。
采用干式真空泵,泵内不仅不存在润滑油,而且亦不存在废液处理的问题。但是泵腔内没有油,就使得泵腔内部的间隙无法保持密封,而且还失去了用于控制温度的传热介质,这对干式真空泵带来很大的挑战。
早期的干泵是由几级罗茨型转子或几级爪型转子串联而成,它们在泵腔内没有任何接触,用同步齿轮带动二个平行的转子轴,由于泵腔内没有任何液体,所以内部间隙要尽可能保持很小,以减少气体的返流。但是这个很小的间隙对于工艺颗粒的堆积显得十分敏感,目前解决这个问题的办法就是:从泵的入口充入惰性气体将它冲刷掉,或者用惰性气体来稀释可凝性的腐蚀气体。
干泵在半导体行业应用成功,亦激励干泵制造商将干泵引入化学工业,虽然干泵价格昂贵,但运行成本较低,特别是没有废液处理问题,对环境和健康十分有利。目前各种类型的干泵很多,包括涡旋泵、隔膜泵、干式旋片泵、罗茨型干泵、爪式干泵和螺杆真空泵。在化工行业应用中占主导地位的是罗茨型干泵、爪式干泵和螺杆真空泵。
1 罗茨型干泵
罗茨型干泵是属于较大型的干式真空泵,在化学工业有着广泛应用。该泵是由三级三叶型罗茨转子串联组成,它们装在同一根轴上,各级转子之间由中隔板隔开,形成各级泵腔,上一级排气口连到下一级进气口,各级串联进行抽气。各级转子的直径和形状是相同的,各级转子的宽度向高压侧方向变窄,但是这种设计均需要级间冷却,亦即上一级排出的气体通过热交换器后冷却后再进入到下一级的入口,如图8所示。这种三叶型的罗茨型干泵虽然可以减少气体返流,但是被抽气体要经过曲折路程才能排出到泵外,容易造成工艺物料堆积在泵腔内,而且颗粒杂质也不容易直接排出到泵外。罗茨型干泵可以从大气抽到10Pa,抽速为(36~60)升/秒。
图8 罗茨型干泵
2 爪式干泵
爪泵在1930年就己经研究成功,并首次用于压缩机行业,这种爪式转子的特点是在高压下具有高的压缩比。爪式转子还具有两个功能:一是用来截获、输送以及压缩气体,另一个就是像阀门一样,在适当的时间打开和关闭吸气口和排气口。目前这种泵的设计结构大都是由一级罗茨转子与三级爪式转子串联而成,罗茨转子作为高真空级,爪形转子作为压缩排气级,如图9所示。
图9 单爪式泵
这种爪式干泵早期应用于半导体的溅射、刻蚀、离子注入及PCVD薄膜制备等领域时,由于在工艺过程中会生成大量微小颗粒或反应生成的腐蚀性介质,可以通过向泵口引入惰性气体进行清洗,以防止微小颗粒在泵腔内沉积,同时亦降低腐蚀性气体的浓度。爪型泵己经在化工行业的蒸发、蒸馏、干燥、浓缩等领域应用。这种爪型泵的极限压力为(1~10)Pa,抽速为(25~140)L/s。
3 螺杆真空泵
螺杆真空泵是20世纪90年代初出现的一种理想的泵种,具有抽速范围宽广、结构简单紧凑、泵腔内无摩擦组件、能耗低、无废液排放以及运行成本低等一系列优点,因而在半导体、光伏产业、化工、制药、石化、空间模拟、低压风洞等领域到广泛应用。
螺杆真空泵的工作原理:由一对同步齿轮带动逆向旋转的螺杆,在螺杆与螺杆之间、螺杆与泵腔之间均有一定的间隙,没有任何金属与金属之间的接触。于是螺杆在旋转过程中就将被抽气体从进气口吸入并排出到排气口,见图10。
图10 螺杆真空泵断面图
早期的螺杆真空泵是等螺距,为了降低能耗、降低泵腔内的温度,又开发了变螺距的螺杆真空泵。其中一种螺杆是由二段螺距大小不等的螺杆拼接而成,另外一种就是螺距连续变化的螺杆真空泵,螺杆是由一个整体材料加工制作而成,各种不同的螺杆设计见图11所示。
图11 各种不同的螺杆设计
变螺距真空泵的最大优点就是比等螺距螺杆真空泵节能30%,排气温度亦较低。图12和图13分别为等螺距与变螺距的P-V图。
图12 等节距螺杆P—V图
图13 变节距螺杆P—V图
与罗茨型干泵和爪式泵相比,螺杆真空泵被抽气体在泵内的路程很短(见图14、15、16),很少受到扰动,可以迅速排出,因而微小的颗粒杂质不易积累在泵内。
图14 多级罗茨式
图15 罗茨+爪式
图16 干式螺杆泵
另外,螺杆真空泵的抽速特性较好,有效工作压力范围很宽,在大气到100Pa时仍有较高抽速(见图17)。
图17 抽速特性比较
由于螺杆真空泵大多数是用于抽除腐蚀性或危险性气体,为了防止泵腔和螺杆被腐蚀或生锈并延长泵的使用寿命,根据不同的应用可选择下列不同的涂层:
PTFE(聚四氟乙烯)涂层:
●耐化学性能好;
●涂层寿命较短;
●熔点低于300℃;
●耐磨性较差。
NIFA涂层:
●2个涂层(Ni+PFA),第一层Ni(15~20)μm,第二层PFA(25~35)μm(可溶性聚四氟乙烯);
●对所有的化学物质均具有良好的耐腐蚀性;
●耐机械划伤的性能好;
●即使PFA涂层磨损,仍然有Ni涂层保护基体材料。
NIFLON涂层:
●1个涂层(PTFE溶于化学镀Ni)15~20μm;
●良好的耐磨性;
●对基材具有良好的结合力;
●对极大多数化学物质具有良好的耐蚀性;
●耐机械划伤;
尽管螺杆真空泵有涂层保护,但是仍然要避免腐蚀性介质冷凝在泵内,因此正确的操作使用和日常维护仍然十分重要——
在启动螺杆泵以前,首先要从泵的入口充入惰性气体,运行半小时,使泵腔内的温度升高,以防止被抽气体冷凝在泵腔内;
在螺杆泵停机以前,亦要从泵的入口充入惰性气体,运行半小时,以彻底清除泵腔内的残余物质;
如果工艺物质堆积在泵腔内,造成再启动困难或启动电流过大,则需要在停泵情况下,关闭主阀,打开排气口,用水蒸汽进行冲刷,直到泵可以灵活转动为止;
最后,由于螺杆泵在化工行业使用工况比较恶劣,必须根据使用说明书的要求进行日常维护。
结语
液环泵结构简单,运动部件少,操作、维护都十分简便,而且价格亦较低廉。螺杆真空泵虽然价格比较昂贵,但性能十分优越,运行费用亦低,不存在废液排放问题,既节能又环保。所以上述两种真空泵最适合于化工工艺应用。
要选择真空泵了解真空的种类与工作原理
真空泵种类大全
按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体传输泵和气体捕集泵。随着真空应用技术在生产和科学研究领域中对其应用压强范围的要求越来越宽,大多需要由几种真空泵组成真空抽气系统共同抽气后才能满足生产和科学研究过程的要求,因此选用不同类型真空泵组成的真空抽气机组进行抽气的情况较多。为了方便起见,将这些泵按其工作原理或其结构特点进行一些具体的详细的分类是必要的。现分述如下:
一、气体传输泵
气体传输泵是一种能使气体不断的吸入和排出,借以达到抽气目的的真空泵,这种泵基本上有两种类型:
1)变容真空泵
变容真空泵是利用泵腔容积的周期性变化来完成吸气和排气过程的一种真空泵。气体在排出前被压缩。这种泵分为往复式及旋转式两种:
⑴往复真空泵:是利用泵腔内活塞做往复运动,将气体吸入、压缩并排出。因此,又称为活塞式真空泵。
⑵旋转真空泵:是利用泵腔内活塞做旋转运动,将气体吸入,压缩并排出。旋转真空泵又有如下几种型式:
①油封式真空泵:它是利用油类密封各运动部件之间的间隙,减少有害空间的一种旋转变容真空泵。这种泵通常带有气镇装置,故又称气镇式真空泵。按其结构特点分为如下五种型式。
a)旋片式真空泵:转子以一定的偏心距装在泵壳内并与泵壳内表面的固定面靠近,在转子槽内装有两个(或两个以上)旋片,当转子旋转时旋片能沿其径向槽往复滑动且与泵壳内壁始终接触,此旋片随转子一起旋转,可将泵腔分成几个可变容积。
b)滑阀式真空泵:在偏心转子外部装有一个滑阀,转子旋转带动滑阀沿泵壳内壁滑动和滚动,滑阀上部的滑阀杆能在可摆动的滑阀导轨中滑动,而把泵腔分成两个可变容积。
c)定片式真空泵:在泵壳内装有一个与泵内表面靠近的偏心转子,泵壳上装有一个始终与转子表面接触的径向滑片,当转子旋转时,滑片能上、下滑动将泵腔分成两个可变容积。
d)余摆线式真空泵:在泵腔内偏心装有一个型线为余摆线的转子,它沿泵腔内壁转动并将泵腔分成两个可变容积。
e)多室旋片式真空泵:在一个泵壳内并联装有由同一个电动机驱动的多个独立工作室的旋片真空泵。
②干式真空泵:它是一种不用油类(或液体)密封的变容真空泵。
③液环式真空泵:带有多叶片的转子偏心装在泵壳内,当它旋转时,把液体(通常为水或油)抛向泵壳形成泵壳同心的液环,液环同转子叶片形成了容积周期变化的几个小容积,故亦称旋转变容真空泵。
④罗茨真空泵:泵内装有两个相反方向同步旋转的双叶形或多叶形的转子,转子间、转子同泵壳内壁之间均保持一定的间隙。它属于旋转变真空泵。机械增压泵即为这种型式的真空泵。
2)动量传输泵
这种泵是依靠高速旋转的叶片或高速射流,把动量传输给气体或气体分子,使气体连续不断地从泵的入口传输到出口。具体可分为下述几种类型。
⑴分子真空泵:它是利用高速旋转的转子把能量传输给气体分子,使之压缩、排气的一种真空泵。它有如下几种型式:
①牵引分子泵:气体分子与高速运动的转子相碰撞而获得动量,被送到出口,因此,是一种动量传输泵。
②涡轮分子泵:泵内装有带槽的圆盘或带叶片的转子,它在定子圆盘(或定片)间旋转。转子圆周的线速度很高。这种泵通常在分子流状态下工作。
③复合分子泵:它是由涡轮式和牵引式两种分子泵串联组合起来的一种复合式分子真空泵。
⑵喷射真空泵:它是利用文丘里(Venturi)效应的压力降产生的高速射流把气体输送到出口的一种动量传输泵,适于在粘滞流和过渡流状态下工作。这种泵又可详细地分成以下几种:
①液体喷射真空泵:以液体(通常为水)为工作介质的喷射真空泵。
②气体喷射真空泵:以非可凝性气体作为工作介质的喷射真空泵。
③蒸气喷射真空泵:以蒸气(水、油或汞等蒸气)作为工作介质的喷射真空泵。
⑶扩散泵:以低压高速蒸气流(油或汞等蒸气)作为工作介质的喷射真空泵。气体分子扩散到蒸气射流中,被送到出口。在射流中气体分子密度始终是很低的,这种泵适于在分子流状态下工作。可分为:
①自净化扩散泵:泵液中易挥发的杂质经专门的机械输送到出口而不回到锅炉中的一种油扩散泵。
②分馏式扩散泵:这种泵具有分馏装置,使蒸气压强较低的工作液蒸气进入高真空工作的喷嘴,而蒸气压强较高的工作液蒸气进入低真空工作的喷嘴,它是一种多级油扩散泵。
⑷扩散喷射泵:它是一种有扩散泵特性的单级或多级喷嘴与具有喷射真空泵特性的单级或多级喷嘴串联组成的一种动量传输泵。油增压泵即属于这种型式。
⑸离子传输泵:它是将被电离的气体在电磁场或电场的作用下,输送到出口的一种动量传输泵。
二、气体捕集泵
这种泵是一种使气体分子被吸附或凝结在泵的内表面上,从而减小了容器内的气体分子数目而达到抽气目的的真空泵,有以下几种型式。
1)吸附泵
它主要依靠具有大表面的吸附剂(如多孔物质)的物理吸附作用来抽气的一种捕集式真空泵。
2)吸气剂泵
它是一种利用吸气剂以化学结合方式捕获气体的真空泵。吸气剂通常是以块状或沉积新鲜薄膜形式存在的金属或合金。升华泵即属于这种型式。
3)吸气剂离子泵
它是使被电离的气体通过电磁场或电场的作用吸附在有吸气材料的表面上,以达到抽气的目的。它有如下几种型式。
⑴蒸发离子泵:泵内被电离的气体吸附在以间断或连续方式升华(或蒸发)而覆在泵内壁的吸气材料上,以实现抽气的一种真空泵。
⑵溅射离子泵:泵内被电离的气体吸附在由阴极连续溅射散出来的吸气材料上,以实现抽气目的的一种真空泵。
4)低温泵
利用低温表面捕集气体的真空泵
3.1.3 真空泵的性能参数及使用范围
3.1.3.1 真空泵的性能参数
1)真空泵的极限压强
泵的极限压强单位是Pa,是指泵在入口处装有标准试验罩并按规定条件工作,在不引入气体正常工作的情况下,趋向稳定的最低压强。
2)真空泵的抽气速率
泵的抽气速率单位是m3/s或l/s,是指泵装有标准试验罩,并按规定条件工作时,从试验罩流过的气体流量与在试验罩指定位置测得的平衡压强之比。简称泵的抽速。
3)真空泵的抽气量
真空泵的抽气量单位是Pa m3/s或Pa l/s。是指泵入口的气体流量。
4)真空泵的起动压强
真空泵的起动压强单位为Pa,它是指泵无损坏起动并有抽气作用时的压强。
5)泵的前级压强
真空泵的前级压强单位是Pa,它是指排气压强低于一个大气压的真空泵的出口压强。
6)真空泵的最大前级压强
真空泵口最大前级压强单位是Pa,它是指超过了能使泵损坏的前级压强。
7)真空泵的最大工作压强
真空泵的最大工作压强单位是Pa,它是指对应最大抽气量的入口压强。在此压强下,泵能连续工作而不恶化或损坏。
8)压缩比
压缩比是指泵对给定气体的出口压强与入口压强之比。
9)何氏系数
泵抽气通道面积上的实际抽速与该处按分子泻流计算的理论抽速之比。
10)抽速系数
泵的实际抽速与泵入口处按分子泻流计算的理论抽速之比。
11)返流率
泵的返流率单位是g/cm2.s。它是指泵按规定条件工作时,通过泵入口单位面积的泵流质量流率。
12)水蒸气允许量
水蒸气的允许量单位是kg/h,它是指泵在正常环境条件下,气镇泵在连续工作时能抽除的水蒸气质量流量。
13)最大允许水蒸气入口压强
最大允许水蒸气入口压强单位是Pa 。它是指在正常环境条件下,气镇泵在连续工作时所能抽除的水蒸气的最高入口压强。
根据你的要求,我认为选取油封式真空泵更好.
原因:
1、它的真空可以抽到很低,这个可以根据种类来选择.最低的真空可以抽到0
2、它是以油类密封可以保证你的湿度
3、它不需要用到水循环系统所以体积也小很多
此外,还可采用无油涡旋真空泵来降低噪音。其压缩进程比较缓慢,有2个或者3个压缩过程同时进行,压缩腔相对曲轴对称,这样泵的运转过程平稳、驱动力矩和气体冲击波动小,使泵的噪音和振动降低。
泵的抽气速率和真空度越高,振动和噪音也越大。接触面积大,平衡不够好,力矩影响,工作环境不够洁净,都会造成振动和噪音比较大。如果是靠活塞往复运动或旋转将气体吸入、压缩并排出的真空泵,如往复真空泵、旋片真空泵、滑阀真空泵、罗茨真空泵,产生噪音的原因很大程度来自活塞的磨损。应避免在最大真空度或最大排气压力附近运行真空泵。在此区域内运行,不仅效率极低,而且工作很不稳定,易产生振动和噪音。对于真空度较高的真空泵而言,在此区域之内运行,往往还会发生汽蚀现象,产生这种现象的明显标志是泵内有噪音和振动。汽蚀会导致泵体、叶轮等零件的损坏,以致泵无法工作。根据以上原则,当泵所需的真空度或气体压力不高时,可优先在单级泵中选取。如果真空度或排气压力较高,单级泵往往不能满足,或者,要求泵在较高真空度情况下仍有较大气量,即要求性能曲线在较高真空度时较平坦,可选用两级泵。如果真空度要求在-710mmHg以上,可选用水环-大气泵或水环-罗茨真空机组作为抽真空装置。
此外,还可采用无油涡旋真空泵来降低噪音。其压缩进程比较缓慢,有2个或者3个压缩过程同时进行,压缩腔相对曲轴对称,这样泵的运转过程平稳、驱动力矩和气体冲击波动小,使泵的噪音和振动降低。
真空泵的发声原理
真空泵是利用转子和可在转子槽内滑动的旋片的旋转运动以获得真空的一种变容机械真空泵。当采用工作液来进行润滑并填充泵腔死隙,分隔排气阀和大气时,即为通常所称的油封旋片真空泵。无工作液时,即为干式旋片真空泵,将另页介绍。
在油封旋片真空泵中,国内习惯上称皮带传动的为旋片真空泵,而把泵与电机直接连接或用联轴器连接的称为直联旋片真空泵。在每种泵中,又有单级和双级之分。在单级泵中,由于选用的结构形式和参数不同,泵的极限压力和用途也不同。
它们的共同特点是结构较简单,使用方便,能从大气压力下起动,可直接排人大气,偏心质量较小,维护简便,双级泵的极限压力为6×10-2~l×10-2Pa,一种单级泵可达4Pa左右,另一种单级泵为50~200Pa左右。
自1909年盖德(W.Gaede)发明旋片泵并取得德国专利,1936年又发明气镇泵,1941年取得专利以来,旋片真空泵得到广泛应用和不断完善。60年代末,国际上出现了提高转速,直联的小型化趋势,70年代初出现了直联系列产品,到80年代初,又推出了改进的系列产品,有多种可供用户选配的附件,可以保护泵,或保护环境,泵本身结构也有改进而使可靠性提高。
在泵的结构方面,为了能在停泵时防止返油,有的设有能自动切断油路的止回阀,有的设有进气通道截止阀,有的为了能在泵开气镇运转突然停电时自动切断气路来保持泵口处于真空状态而设有油泵和控制结构。在附件方面,有消雾器、气味过滤器、阻挡碎玻璃等杂物用的人口过滤器、灰尘过滤器、蒸汽凝结阱、化学阱,有控制泵温以提高水蒸气抽除率和保护泵的温控水量调节阀。到了80年代末,90年代初,又推出了油过滤器、能监视油温、油压、油质等的电子显示器,甚至可以与计算机联结,进行自动控制,采用强制润滑和风冷,使泵的连续工作入口压力达10kPa,甚至更高,同一台泵的适用范围因而更大。
双级旋片真空泵,可以广泛用于冰箱、空调机、灯泡、日光灯、瓶胆生产和电子、冶金、医药、化工、滤油机、印刷机械、包装机等工业,可作为扩散泵、罗茨泵、分子泵等的前级泵,供电子仪器、医疗仪器等配套和实验研究应用。由于直联泵没有皮带摩擦的粉尘的污染,体积小、重量轻、材料节约、功能日趋完善,更被广泛推广应用。
噪声成因和降低措施
旋片泵的噪声,通常指泵在温度稳定时,在极限真空下测得的噪声级。它包括泵本身的噪声和电机噪声对用户来说,还关心泵温未稳定时的起动阶段的噪声和不同入口压强下运转的噪声,还有开气镇工作时的噪声。因此。要考虑多种影响因素。
就发声的部位来分,泵的噪声有下列几个可能方面:
(1)旋片对缸体的撞击,泵残余容积和排气死隙中的压力油的发声;
(2)排气阀片对阀座和支持件的撞击;
(3)箱体内的回声和气泡破裂声;
(4)轴承噪声;
(5)大量气、油冲击挡油板等引起的噪声;
(6)其他。如传动引起的噪声,风冷泵的风扇噪声等。
(7)电机噪声,这是至关重要的因素。
分述如下:
1)旋片对缸壁的撞击。如果设计、制造或用料不当,引起旋片滑动不畅,或者由于存在排气死隙,不可压缩的油引起旋片头部不能始终紧贴缸壁运转,就会引起旋片对缸壁的撞击发声。因此,宜采用园弧面分隔进排气口的结构。用排气导流槽消除死隙。在采用线分隔结构时,应尽量缩短排气终点到切点的距离,对于70L/s以下的旋片泵,考虑旋片的实际厚度,建议取7~lOmm,大泵取大值。过近时,由于转子旋片槽的存在和旋片头部只有一条狭带接触,旋片转到切点位置时密封效果一旦不好,就会影响泵的抽速甚至极限压力。可见这种结构不能完全消除排气死隙,限制了降噪水平。
需要指出的是,旋片与槽的间隙过大会降低性能。因此,要保证合理的公差配合和形位公差值,注意旋片的热膨胀,避免旋片与槽拉毛,注意油的冷油粘度,设计足够的旋片弹簧力,在采用园弧面分隔时,转子中心的附加偏心值不宜过大。不然,旋片经过两个园弧,会在交点处产生脱离缸壁趋势,反而引起撞击噪声。一般小泵为0.20~0.25mm即可,大泵可适当加大。
排气死隙中的压力油和残余容积中的压力油的发声。泵到极限压力时,两处压力油会在与真空腔室接通时高速射向真空腔室,与转子、缸壁撞击发声。两处容积的大小、位置与噪声有关。
2)阀片对阀座和支持件的撞击噪声
吸入的气体量大,泵的循环油量多,阀片噪声就越大,阀跳高,阀的面积大,阀片噪声也大,阀片材料也有一定影响。橡胶阀片的噪声应比钢片或层压板为好。为此,要节制进油量,阀片关闭要及时,要严密。注意阀的选材与结构。
3)箱体内的回声和气泡破裂声气量增大时,此项噪声将增大。因此,开气镇时或通大气时此项噪声会明显增大。如果气镇量可调,则可合理调节气镇量。
4)大量气体和油排出时冲击挡油板等零部件时发出的噪声。如果零件刚性不足,或未紧固,产生振动与碰撞,会使此项噪声增大。因此挡油板不仅应有足够刚度并紧固,而且,在需与其他零件(如油箱)接触时,利用夹橡胶的方法可避免振动引起的碰撞噪声,并改善挡油效果。
S=2.303V/tLog(P1/P2)其中:S为真空泵抽气速率(L/s)V为真空室容积(L)t为达到要求真空度所需时间(s)P1为初始真空度(Torr)P2为要求真空度(Torr)例如:V=500L t=30s P1=760Torr P2=50Torr则:S=2.303V/t Log(P1/P2)=2.303x500/30xLog(760/50)=35.4L/s
扩展资料:
机械选择
⑴真空泵工作时产生的振动对工艺过程及环境有无影响。若工艺过程不允许,应选择无振动的泵或者采取防振动措施。
⑵了解被抽气体成分,气体中含不含可凝蒸气,有无颗粒灰尘,有无腐蚀性等。选择真空泵时,需要知道气体成分,针对被抽气体选择相应的泵。如果气体中含有蒸气、颗粒、及腐蚀性气体,应该考虑在泵的进气口管路上安装辅助设备,如冷凝器、除尘器等。
⑶真空泵在其工作压强下,应能排走真空设备工艺过程中产生的全部气体量。
⑷正确地组合真空泵。由于真空泵有选择性抽气,因而,有时选用一种泵不能满足抽气要求,需要几种泵组合起来,互相补充才能满足抽气要求。如钛升华泵对氢有很高的抽速,但不能抽氦,而三极型溅射离子泵,(或二极型非对称阴极溅射离子泵)对氩有一定的抽速,两者组合起来,便会使真空装置得到较好的真空度。另外,有的真空泵不能在大气压下工作,需要预真空;有的真空泵出口压强低于大气压,需要前级泵,故都需要把泵组合起来使用。
⑸真空设备对油污染的要求。若设备严格要求无油时,应该选各种无油泵,如:水环泵、分子筛吸附泵、溅射离子泵、低温泵等。如果要求不严格,可以选择有油泵,加上一些防油污染措施,如加冷阱、障板、挡油阱等,也能达到清洁真空要求。
⑹正确地选择真空泵的工作点。每种泵都有一定的工作压强范围,如:2BV系列水环真空泵工作压强范围760mmHg~25mmHg(绝压),在这样宽压强范围内,泵的抽速随压强而变化(详细变化情况参照泵的性能曲线),其稳定的工作压强范围为760~60mmHg。因而,泵的工作点应该选在这个范围之内较为适宜,而不能让它在25~30mmHg下长期工作。
⑺真空泵排出来的油蒸气对环境的影响如何。如果环境不允许有污染,可以选无油真空泵,或者把油蒸气排到室外。
⑻真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。如:某真空干燥工艺要求10mmHg的工作真空度,选用的真空泵的极限真空度至少要2mmHg,最好能达到1mmHg。通常选择泵的极限真空度要高于真空设备工作真空度半个到一个数量级。
⑼真空泵的价格、运转及维修费用。
参考资料来源:百度百科-真空泵