管路特性曲线与水泵性能曲线在定义上有何区别?
一、离心泵的特性曲线定义
当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方 法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。
在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。
在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。
二、影响离心泵特性曲线的因素
离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
1、叶轮出口直径对性能曲线的影响
在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。
根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。
2、转速与性能曲线的关系
同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:
Q1/Q2 = n1/n2
H1/H2 = (n1/n2)2
Nl/N2 = (n1/n2)2
三、理论特性曲线的定性分析
1、理论扬程特性曲线的定性分析
由 HT =中,将C2u = u2 - C2rctgβ2 代入,可得:
HT =(u2 - C2rctgβ2)
叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =
式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
所以:HT =(u2 - ctgβ2)
式中β2、F2均为常数。当水泵转速一定时,u2也为常数。
故:HT = A–B QT 是一个直线方程。其斜率是用β2来反映的:
β2>90º时,HT = A + B QT,后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不随理论流量的变化。
β2<90º时,HT = A–B QT,前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。
四、实测特性曲线的讨论
它反映泵的基本性能的变化规律,可做为选泵和用泵的依据。各种型号离心泵的特性曲线不同,但都有共同的变化趋势。
1、每一个Q都对应于一定的H,N,η,Hs。
2、Q-H曲线是一条不规则的下倾曲线。
(1)设计工况点。最高效率点,水泵在该点工作效率最高。
(2)水泵高效工作段。是水泵效率较高的工作范围,最高效率点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效段内。
3、Q—N曲线
N随着Q的增大而增大,闭闸启动:水泵启动前,压水管路闸阀是全闭的,待电动机运转正常后,压力表读数达到预定数值时,再逐步打开闸阀,使水泵工作正常运行。
Q—N曲线,指的是水或某种特定液体时的轴功率与流量之间的关系,抽升的液体容重不同时,要换算。
4、Q—Hs曲线
该曲线上各点的纵坐标,表示水泵在相应流量下工作时,水泵做允许的最大限度的吸上真空高度值。不表示水泵在某点(Q,H)点工作的实际吸水真空值。实际的Hs必须小于Q—Hs曲线上的相应值。
5、被输送液体的重力密度和粘度等对特性曲线的影响。所输送的液体粘度愈大,泵内的能量损失愈大,水泵的扬程和流量都要减小,效率要下降,而轴功率增大。因此,如果被输送液体的粘度与试验条件不符时,则Q-H,Q-N,Q-η,Q-Hs要进行换算后才能使用,不能直接套用。
管路特性曲线由于离心设备(包括压缩气体的离心机和压缩液体的离心泵)总是通过管路系统与外界相连,广其管路系统可能或长或短,或简单,或复杂,因此它表现出来一个特征,流体在管网中的流动阻力与流量的平方成正比。这个比例系数就叫阻力系数。同样的机泵,在不同的状况,在不同的单位、地点、系统中表现不完全一样,就是因为各系统的阻力系数不一样,这种特性就叫管路特性管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成hf=SQ^2泵水装置的管道系统特性曲线是提升高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2水泵扬程和流量的关系曲线H=Hs+SpQ^2 是一条凹向下的曲线,而管道系统特性曲线是一条凹向上的曲线,对应的坐标与扬程和流量一样地看H跟Q。管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成hf=SQ^2泵水装置的管道系统特性曲线是提升。高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2水泵扬程和流量的关系曲线H=Hs+SpQ^2 是一条凹向下的曲线,而管道系统特性曲线是一条凹向上的曲线,对应的坐标与扬程和流量一样地看H跟Q。
由于离心设备(包括压缩气体的离心机和压缩液体的离心泵)总是通过管路系统与外界相连,广其管路系统可能或长或短,或简单,或复杂,因此它表现出来一个特征,流体在管网中的流动阻力与流量的平方成正比。这个比例系数就叫阻力系数。同样的机泵,在不同的状况,在不同的单位、地点、系统中表现不完全一样,就是因为各系统的阻力系数不一样,这种特性就叫管路特性
管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成hf=SQ^2
第 1 页
泵水装置的管道系统特性曲线是提升高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2
水泵扬程和流量的关系曲线H=Hs+SpQ^2 是一条凹向下的曲线,而管道系统特性曲线是一条凹向上的曲线,对应的坐标与扬程和流量一样地看H跟Q。
管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成hf=SQ^2
泵水装置的管道系统特性曲线是提升高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2水泵扬程和流量的关
特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。
1、改变管路特性曲线
改变泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
2、改变泵特性曲线
根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便,在生产中但很少采用。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
3、泵的串、并连调节方式
当单台泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。
1、水泵的特性曲线与管路的特性曲线的相交点,就是水泵的工作点。
2、离心泵的特性曲线:
离心泵特性曲线的主要性能参数有流量、扬程、有效功率、轴功率、效率。离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。
1、流量不同出口压力也不同;
2、特性曲线是实际测试得到的,不是根据参数得到的。
你选用的水泵出厂资料里有特性曲线,你可以查看。