建材秒知道
登录
建材号 > 水泵 > 正文

多级锅炉给水泵串量调整方法有

有魅力的煎饼
爱听歌的彩虹
2022-12-27 02:34:00

多级锅炉给水泵串量调整方法有?

最佳答案
懵懂的世界
年轻的钢笔
2026-02-14 23:27:33

多级泵串量调整方法:

运行中的多级锅炉给水泵由于轴向力的存在和平衡装置的作用,使转子处在动态平衡状态,即转子在不停的轴向串动。根据实验资料,串动量大约在0.10mm—0.15mm之间,串动次数10—20/min.这个串动量并不是本文要讨论的水泵串动量,本文要讨论的串量是随着平衡装的磨损,在轴向力的作用下,叶轮在向吸入侧的移动量。水泵的串量,历来有不同的看法,一种看法认为,当泵装配完毕后,不装平衡装置,将转子固定后,推向吸入端,使叶轮的口环紧靠密封环,我们把这个串量称为b1.然后再拉向吐出端,使叶轮的后盖板紧靠导叶,这个串量称为b2.这样b1与b2之和我们称为泵的串量,既全串。

另外还有一种串量,就是b1+b2/2,也就是我们说的工作串。其实在现实中,这两种串量的看法均不够严密。因为在水泵运行中,除了在水泵启动的一瞬间向吐出端串动一下外,运行中在在轴向力的作用下转子总是向吸入端运动。真正起到作用的是前面提到的b1,而b2没有什么实际意义。由于泵在装配加工中的误差等因素,一般情况下b1≠b2.串量应该是叶轮和导叶的中心线对准时,叶轮吸入侧到导叶的距离,也就是前面提到的b1,确切的说是泵在运行中可以向吸入端串动的最大量。多级泵运行中导叶中心和叶轮中心完全对中时,水泵的水力损失最小,效率最高,是水泵理想的经济运行状态。新泵出厂和大修后的泵均应达到这个状态。但是泵在运行过程中,由于平衡盘的磨损,逐渐使转子在轴向力的作用下,向吸入侧移动,直到叶轮碰到导叶为止。

多级锅炉给水泵串量分析和调整方法有那些

二、水泵串量的调整:

1.经济运行的串量

我们都知道水泵的性能曲线,如水泵运行中导叶中心和叶轮中心不能对准就会离开最佳工况点,效率会显著下降。一般表现为流量减少,扬程增加,耗电量也相对增加,如果任其下去,可以在很长时间里走完全部串量即b1.这样虽减少了维修时间,但效率会越来越低,耗电量也会越来越大。为此,必须选一个维修量不大,耗电量又不大的串量,使水泵有一个较高的效率。根据实际经验,我们所选择的b1值应该大于b1+b2/2.到底应该大多少呢?根据实际情况,我们一般选择大0.15mm—0.35mm.如在我公司2号给水泵大修后调整该串动时,b1值为3.13mm,b1+b2/2为3.28mm.这个串量值是兼顾了水泵效率和调整平衡盘等维修量之后确定的。

2.大修后的串量

水泵在大修中不可避免的会更换、修复部分或全部叶轮,由于存在着制造误差,保证不了原来的串动量。需要重新调整。其方法是先把叶轮在进水段和首级中段的串量测出,并以此为标准,逐个测出各个叶轮的最大串量,其值略大于进水段的,就可以视为合格,小于进水段的,则必须进行修整。一般情况下,是采取在中段之间加垫或对中段的止口进行车削的方法来调整。当然,在进行调整之前必须保证各转子部件在轴的相对位置不变。最终装配后,由于制造质量和安装工艺等原因,串量还要稍微有些变化,必须以这时所测的值为准。

三、多级锅炉给水泵平衡盘间隙的调整:

对于多级锅炉给水泵而言,有很多资料认为叶轮对中后,平衡盘和平衡套之间应该还有0.10mm左右的间隙,以防止平衡盘和平衡套之间发生研磨。这实际上是没有必要的。其一是平衡盘所在的高压室内的高压液体总要使平衡盘远离平衡套运动,即使在启动泵时泵内的压力没有建立,由于液体的反冲力所造成的轴向力作用,也会产生这个效果。其二是平衡装置是允许磨损的,通过它的磨损才保证叶轮不被磨损,实际上由于高压液体的作用,泵在正常工作时平衡盘和平衡套最小间隙也会保证在0.10mm左右,直接研磨的机会并不多。

平衡盘和平衡套的研磨严重往往是由于安装和制造不良,使平衡盘歪斜造成的。事实已经证明了这一点。所以在原部颁标准中规定,要求平衡盘密封面和轴线的垂直度﹤0.03mm,也就是所说的平衡盘晃度。

最新回答
外向的夏天
朴素的花卷
2026-02-14 23:27:33

给水泵震动大的原因:

1.转子质量不平衡引起的振动。

2.转静摩擦产生振动。

3.基础刚度不够引起的振动基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。

4.联轴器异常引起的振动。

联轴器安装不正,泵和电机轴不同心,泵与耦合器轴在找正时,未考虑运行时轴向位移的补偿量,联轴器螺栓间隙不均匀,这些都会引起给水泵、电机振动。

5.转子的临界转速引起的振动。

当转子的转速逐渐增加并接近给水泵转子的固有振动频率时,给水泵就会猛烈地振动起来,转速低于或高于这一转速时,就能平稳地工作。在这种情况下,只有一部分螺栓承受大部分扭矩,这样就使本来不该产生的不平衡力加到了轴上,从而引起振动。

6.电动机是水泵运行的原动机,电动机好坏直接关系到水泵运行的稳定。电动机轴承损坏,电动机内部磁力不平衡,也会间接引起水泵的振动。安装时如果磁力中心不准确,会导致电机轴来回窜动,会引起前置泵及耦合器的转子跟着窜动,从而导致泵组的振动。

7.汽蚀现象引起的振动。

给水泵的几何安装高度一定,泵的汽蚀余量一定,泵入口的压头减小,压力降低,在水温度恒定的条件下,液体中气体的气化点降低,使泵内发生了汽蚀现象。汽蚀过程本身就是一种反复冲击和凝结的过程,伴随着很大的脉动,这些脉动如果频率和泵的固有频率相等,就会引起泵的振动,该振动又将促使更多的气泡产生和破裂,两者相互激励,导致泵更强烈的振动。

8.水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态过度过程造成的输水管道内压力急剧变化和水锤作用等,也常常导致给水泵组产生振动。

安静的手链
甜蜜的月饼
2026-02-14 23:27:33
平衡盘瓢偏后,其端平面与轴心线就不垂直,组装后使平衡盘与平衡环之间出现张口,无法平衡轴向推力,使平衡盘磨损电机过负荷。因此,凡有平衡盘装置的水泵都要进行瓢偏测量。

发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。

5 y0 BL$ XQ! H, E目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。$ F: {, U! }: B&Y&c

1、给水泵的解体 : @X n2 D+ m# U+ R$ q6 G

水泵检修解体阶段的测量目的在于:2 L( Z. ^&vc' L4 n

a)与上次检修时的数据进行对比,从数据的变化分析原因制定检修方案;

1 T( G+ m' o$ J+ ~ ^b)与回装时的数据进行对比,避免回装错误。

' B( c- C% A3 x1 I( M- ?( }1.1轴瓦的间隙紧力及瓦口间隙8 X, W. X. P5 G

轴瓦顶部间隙一般取轴径的0.15%~0.2%,瓦口间隙为顶部间隙的一半。瓦盖紧力一般取0.00mm~0.03mm。间隙旨在保证轴瓦的润滑与冷却以及避免轴振动对轴瓦的影响。如果在解体过程中发现与标准有出入,应进行分析,制定针对性处理方案并处理。

: x( J" _0 Y- |' } k2 I1.2水泵工作窜量' z/ {. x$ \- Z8 m

水泵工作窜量取0.8mm~1.2mm。工作窜量的数值主要是保证机械密封在水泵启停工况及事故工况下不发生机械碰撞和挤压。也是水泵运行中防止动静摩擦的一个重要措施。- Z1 ?+ m* E8 S" ^5 y' R

1.3水泵高低压侧大小端盖与进出口端的间隙, S3 \/ e! c( H$ u# d/ b7 W

测量水泵高低压侧大小端盖与进出口端的间隙目的在于检查紧固螺栓是否有松动现象,同时为水泵组装时留下螺栓紧固的施力依据。

2 I8 C5 X ^) P, l! \* v1.4水泵半窜量的测量

" z&M, `5 I/ ^3 q6 {在未拆除平衡盘的状态下测量水泵的半窜量,水泵的半窜量应该是水泵总窜量的一半,一般情况下其数值为4mm左右。检查水泵半窜量与原始数据进行比较,可找出平衡盘磨损量及水泵效率降低的原因。5 n. C$ \, A! c D( w: O! Q% G

1.5水泵总窜量的复查

- by% ?( I( a3 [! a拆除平衡盘后即可测量水泵总窜量,水泵总窜量是水泵的制造及安装后固有的数值,一般水泵总窜量在8mm~l0mm。水泵总窜量如果发生变化,则说明水泵各中段紧固螺栓有松动或水泵动静部分轴向发生磨损。

s# j$ }' ^$ r+ a1.6水泵各级窜量

D1 J$ o2 n6 b9 V% B9 ?' v, Z水泵在抽出芯包后就要对各级中段及叶轮进行解体,在解体过程中应对水泵逐级进行窜量测量,在测量各级窜量的过程中还应对各级中段止口轴向间隙进行测量。各级中段的窜量应在总窜量数值的附近,一般不超过0.50mm,如数值偏差较大或与原始数据出入较大,应认真分析原因,并进行消除。各级中段止口间隙的测量是为了检验水泵总装的误差。' b3 D3 M0 |: M, T1 }

解体过程各数据的测量,目的是根据数据进行分析,找出水泵故障的原因,制定本次检修的方案及针对性处理措施。同时,在回装过程中进行参考,检验回装过程的误差。8 u3 _- k* z% x' X p

2、水泵静止部件检修中间隙的测量与调整 x d7 m0 a u6 k9 s) W( m

2.1各中段止口径向间隙的测量与调整/ X/ j* f: @% O&Y&k

测量相邻两泵段的止口间隙,方法如图1。将相邻两泵段迭起,再往复推动上面的泵段,百分表读数差就是止口间隙。然后按上法对90°方位再测量一次取其平均数。其间隙值一般为0.04mm~0.08mm,当大于0.1mm时,就要进行修理。简单的修理方法,可在间隙较大的中断凸止口周围均匀地堆焊6~8处,每处长度25mm~40mm,然后将止口车削到需要尺寸。各中段止口间隙数据在水泵检修中非常重要,止口间隙过大,则增加了水泵转子的相对晃度,造成水泵通流间隙的偏移,二单侧间隙减小,运行中则有可能发生动静摩擦引起水泵抱死。止口间隙过小则有可能发生中段安装不到位,人为减小水泵总窜量,轻则降低水泵效率,重则引起动静摩擦,损坏设备。

* W- A: `: `0 Z4 k0 P2 O 6 ]2 f/ o2 C+ h' J+ R! g

2.2导叶与泵壳的径向间隙测量与调整4 E2 I# ~) ^5 F" `' M/ [1 j7 D

现代高压给水泵的导叶一般采用不锈钢制造,当导叶冲刷损坏严重时,应更换新导叶。新导叶在使用前应将流道打磨光滑,这样可提高水泵效率。导叶与泵壳径向间隙一般为0.04mm~0.06mm。固定导叶的定位销与泵壳为过盈配合,其紧力为0.02mm~0.04mm,与导叶为间隙配合。导叶在泵壳内应被压紧,以防导叶与泵壳隔板平面磨损。为此可在导叶背面沿圆周方向,并尽量靠近外缘均匀地钻3~4孔,加上紫铜钉,利用紫铜钉的过盈量使两平面压紧,如图2a所示。在装紫铜钉之前,先测量出导叶与泵壳之间的轴向间隙,其方法是在泵段的密封面及导叶下面放上3~4根铅丝,再将导叶与另一泵段放上,如图2b所示,垫上软金属用大锤轻轻敲打几下,取出铅丝测其厚度,两个地方铅丝平均厚度之差,即为间隙值。紫铜钉的高度应比测出的间隙值多0.5mm,这样泵壳压紧后,导叶便有一定的预紧力。

$ k, M4 I6 U3 s2.3水泵密封环、导叶套间隙的测量与调整9 q) f+ ? i]

密封环与导叶衬套分别装在泵壳及导叶上,如图3所示。它们的材料多采用黄铜制造,其硬度远远低于叶轮。当与叶轮发生摩擦时,首先损坏的是密封环和导叶衬套。若发现其磨损量超过规定值或有裂纹时,必须进行更换,密封环同叶轮的径向(直径)间隙,随密封环的直径大小而异,一般为密封环内径的1.5‰~3‰;磨损后的允许最大间隙不得超过密封环内径的4‰~8‰(密封直径小,取大比值;直径大,取小比值)。密封环同泵壳的配合,如有紧固螺钉可采用间隙配合,其值为0.03mm~0.05mm;若无紧固螺钉,其配合应有一定紧力,紧力值为0~0.03mm。导叶衬套同叶轮的间隙应略小于密封环同叶轮的间隙(小1/10)。导叶与导叶衬套为过盈配合(过盈量约为0.015mm~0.02mm),还需用止动螺钉紧固。+ {4 v9 q8 {F. M

3、水泵转子部件检修中间隙的测量与调整

$ H! G% j1 Q P3.1水泵轴的弯曲. L6 J0 o6 f% m) E

高压水泵结构精密,动、静部分之间间隙小,转子的转速高,轴的负荷重,因此对轴的要求比较严格。轴的弯曲度一般不允许超过0.02mm,超过0.04mm时应进行直轴工作。泵轴弯曲过大将增加水泵转子的晃度,水泵转子晃度增大势必要增加密封环及导叶衬套间隙,以防治动静磨损,而增大其间隙就会降低水泵效率。且间隙增加到一定量,还会形成涡流,引起水泵振动。

( x% S* \4 R+ E&w7 q3.2 叶轮与泵轴装配间隙

# D! }' x5 n' K7 I- h, T多级给水泵的叶轮与泵轴装配一般是间隙配合,其间隙值在0.00mm~0.04mm。这是由水泵轴及叶轮加工公差决定的。间隙过小或过盈一方面增加组装难度,另外影响转子部件热膨胀,增加水泵转子后天性晃度的产生引起转子质量不平衡。间隙过大增加水泵转子晃度,造成水泵转子动平衡不稳定。叶轮内孔与轴的配合部位,由于长期使用和多次拆装,其配合间隙将增大,此时可将配合的轴段或叶轮内孔用喷涂法修复。

) }( I. ~3 C+ h7 @- n \% Q- X3.3泵轴键及键槽间隙的调整

9 S2 I e8 G0 d9 {' d水泵叶轮与泵轴靠键传递转动。键和泵轴键槽应该是过盈配合,紧力在0.00mm~0.03mm。键和叶轮键槽应是间隙配合,其值也在0.00mm~0.03mm。* ~&p5 t* e- U- Z6 a

3.4 转子小装0 A: G4 kA+ _/ g" S/ g

a)小装的目的

: K8 {5 u0 {&z转子小装也称预装或试装,是决定组装质量的关键。其目的为:测量并消除转子紧态晃动,以避免内部摩擦,减少振动和改善轴封工况;调整叶轮之间的轴向距离,以保证各级叶轮的出口中心对准;确定调节套的尺寸。$ a% ~: j! d' Y0 u

b)转子套装件轴向膨胀间隙的确定, ^B1 j5 W7 K* ~" e

因为转子套装件与泵轴材质不一样,另外,泵轴两端均在泵体以外。所以在热态下,泵轴与转子套装件膨胀不一样,一般情况下,转子套装件膨胀量大于泵轴,所以在转子组装时要对转子套装件留有热膨胀间隙。转子的膨胀间隙的数值是根据转子的长短及水温确定的。一般在10个叶轮左右的转子其膨胀间隙在1mm左右。膨胀间隙过大,则不能很好紧固转子套装件,膨胀间隙过小,则可能造成转子热态下的弯曲,造成动静摩擦,损坏设备。4 I* Q: D9 U2 i

c)小装前的检查

/ O9 o( @3 s) s- d! I: N+ XS检查转子上各部件尺寸,消除明显超差。轴上套装件晃度一般不应超过0.02mm。对轴上所有的套装件,如叶轮、平衡盘、轴套等,应在专用工具上进行端面对轴中心线垂直度的检查。如图4a所示,假轴与套装件保持0.00mm~0.04mm间隙配合,用手转动套装件,转动一周后百分表的跳动值应在0.015mm以下,用同样方法检查另一端面的垂直度。也可不用假轴,将装件放在平板上测量,如图4b所示,这样的测量法不能得出端面与轴中心线的垂直误差,得出的是上下端面的平行误差。&Q1 @" L+ y( J, o+ ?- \

d)水泵转子晃动度的测量

0 V# W( |3 h+ F! V- }/ Q3 v" x做好上述准备工作后,将套装件清扫干净,并按从低压侧到高压侧的顺序依次装在轴上,拧紧轴套锁母,留好膨胀间隙(对于热套转子,只装首、末两极叶轮,中间各级不装)。然后分别测出各部位的晃动,如图5所示。各处的晃动允许值见表1。&x7 J&t8 r g6 Q

0 e5 u, [6 ?4 K$ C! J

转子小装晃度符合要求后,应对各部件相对位置做好记号,叶轮要打好字头,依次拆除,等待总装。

5 y. n: |+ |% ~4、水泵芯包组装及总装间隙的调整 1 d: y- s, k" N&Y1 X

4.1转子总窜量的测量|% M [9 Q9 x/ ?7 Y* ~

在芯包组装过程中要对每级叶轮进行总窜量测量以保证水泵轴向间隙,组装过程中最大与最小窜量的偏差不能超过0.50mm,否则就得检查原因并消除。水泵总窜量关系到叶轮出口中心线与导叶入口中心线的对中,直接影响水泵的效率及水泵的运行周期。水泵芯包组装完毕穿入外壳体内,水泵进出口端安装完毕并将拉紧螺栓全部拧紧后,还要作一次总窜量的测量,此时不装轴承及轴封,也不装平衡盘,而用专用套代替平衡盘套装在轴上,并上好轴套螺母,在轴端装一百分表,然后拨动转子,转子在前后终端位置的百分表读数差即是水泵的总窜量。测出的窜量数值与分级窜量进行比较,如有出入要分析原因并消除。

8 e7 P7 _8 C+ V: B) O% H! i) i8 j4 o3 P4.2转子轴向位置(半窜量)的调整0 s7 q [7 C: W0 o8 X&b# u. l' E

完成转子总窜量的测量调整后,将平衡盘、调整套装好并将锁母紧固到小装位置,架上百分表,前后拨动转子,百分表读数差即为转子半窜量。转子半窜量应为总窜量的一半,如半窜量与总窜量不符,应对调整套进行调整使之符合。) C&cr! d( P- _$ N7 a' t

4.3工作窜量的调整z- H! |# L' R( s

大型给水泵都装有工作窜量调整装置,有的给水泵用推力瓦进行调整,有的给水泵用推力轴承进行调整,测量方法与转子测总半窜量方法一样,在推力轴承(或推力瓦)工作面或非工作面进行加减垫即可对工作窜量进行调整。一般给水泵工作窜量取0.8mm~1.2mm。当泵启动与停止而平衡盘尚未建立压差时,叶轮的轴向推力由推力轴承的工作瓦块承受。平衡盘一旦建立压差,叶轮的轴向推力就完全由平衡盘平衡,而推力盘与工作瓦块脱离接触。要达到这样的要求,将转子推向进口侧,使推力盘紧靠工作瓦块,此时平衡盘与平衡座应有0.01mm的间隙(图6)。若间隙过大或无间隙,可调整工作瓦块背部的垫片,也可调整平衡盘在轴上的位置。推力轴承在运行时的油膜厚约为0.02mm~0.03mm,要使推力轴承在泵正常运行时不工作,平衡盘与平衡座在运行时的间隙应大于0.03mm~0.045mm,只有这样推力盘才能处于工作瓦块和非工作瓦块不投入工作。如果推力轴承仍然处于工作状态,则应重新调整平衡盘与平衡座的轴向间隙。

: {# J! O8 o" ?]5 [ 0 `( z, W6 ]4 Uy2 Q* k

推力盘与非工作瓦块的轴向间隙远远小于转子叶轮背部间隙(即半窜量),当水泵因汽蚀或工况不稳而产生窜轴时,推力盘与非工作瓦块先起作用,不致发生转子与泵壳相摩擦的故障。 f, l, |&S2 q# d?

4.4水泵径向间隙的调整&Z0 Cu4 _' v' h7 ~v

泵体装完后,将两端的端盖、瓦架装好,即可调整转子与静子的同心度(抬轴)。3 d% z: c, F9 ?: u. D5 I

对于转子与静子的同心度要求是:半抬等于总抬量的一半或者稍小一点(考虑转子静挠度),瓦口间隙两侧相等且四角均匀。8 y' x6 i, S$ F/ t v

抬轴的测量:未装轴瓦前,在两端轴承架上各装1只百分表,表的测杆中心线要垂直于轴中心线并接触到轴颈上。用撬棍在轴的两端同时平稳地将轴抬起,其在上下位置时百分表的读数差,就是转子的总抬量。

! O/ l( D6 _8 m1 c将转子撬起,放入下瓦,此时百分表的读数应为转子半抬量,并且应该是总抬量的一半,否则就需进行调整。调整时如果轴承架下有调整螺栓,则只需松、紧螺栓即可。若无调整螺栓,则可调整轴瓦下面的垫片厚度。

4 i6 [7 n% a7 `7 FO" l ]对于转子与静子两侧的同心度,一般借助轴瓦两侧瓦口间隙是否均匀来认定。放入下瓦后用塞尺测量轴瓦4个瓦口间隙,调整均匀且瓦口单侧间隙应为轴瓦顶部间隙的一半。 s+ |4 m' q' a* E/ j' U/ T

4.5 轴瓦及机械密封间隙的调整

! [' l+ t" c&b. z9 W5 X3 v轴瓦间隙紧力的调整参照解体过程所说的要求进行调整。机械密封的间隙调整原则是:机械密封静环预紧力的压缩量是总压缩量的一半,调整方法是将水泵转子推向水泵低压侧,调整机械密动环与泵轴密封圈的紧力,保证水泵高低压侧机械密封的预紧力。

8 [% Z7 H/ V9 S$ Y* j# g0 r% w5、其它间隙的调整

j/ R* X3 f2 H/ T* t2 [: T5.1联轴器中心

2 OR, x8 ^7 a$ v&R给水泵联轴器中心的调整是水泵检修中的一个重要的间隙调整,中心调整不当直接危害是水泵的振动加大。联轴器中心一般要求外园偏差小于0.05mm,两对轮张口偏差小于0.04 : u7 E$ E5 N% ]" D* V% t, \4 n" b! \

发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。

糊涂的玉米
追寻的红牛
2026-02-14 23:27:33
原因:

1、长期运行后平衡已经磨损严重,要想泵通过水力达到平衡,泵转子必须找到新的平衡位置;

2、水泵本身的水力平衡有问题,如平衡盘的设计大小所能达到的效果及平衡管路大小的配套效果等等;

3、工况变位置变,不断的变平衡盘磨损会加剧;

4,平衡管路上的阀门误关;

5,给水泵的流量突变。

要想解决首先要进行分析如是

第一点,必须专业人员;

第二点可以考虑更换平衡盘和平衡环;

第三点尽量使泵运行在某一工况变化不要太频繁。

明亮的樱桃
苹果纸鹤
2026-02-14 23:27:33
全容量或半容量汽动给水泵是针对给水泵而言的。全容量就是单台给水泵就能满足锅炉额定蒸发量的给水要求,半容量就是一半喽。配置要求:全容量配置一主一备,半容量配置两主一备。一般大机组都是半容量的给水泵,优点:1、造价低(主要是全容量的电动泵真的很贵)。2、运行方式灵活。3、运行中安全系数高。4、启动过程中相对经济。

神勇的书本
心灵美的百褶裙
2026-02-14 23:27:33

多级泵轴窜量的测量与调整方法:

1、把平衡盘与平衡环靠死,让后在轴伸端面或者联轴器端面上打表记下表读数。然后根据图纸上标注装配前间隙为多少,再来推动联轴器来进行调整。

2、在装上轴承之前先用塞尺把平衡环、平衡盘中间的间隙测量出来,然后再根据要求来让转子往一端推,此时的打表读数就是窜量的间隙。

3、通过在推力轴承或推力盘内侧加减垫片调整间隙大小。

扩展资料:

调整多级离心泵的转子轴向流量是为了满足图纸上平衡盘间隙的要求,使泵在设计的轴向力下工作。当调整泵转子在年底前推,推不动了,然后平衡板或叶轮口环一步会抵制(具体根据图),然后在轴,开始拉回转子,此时距离可以计算平衡板间隙,安装后的轴承。

离心泵是利用叶轮的旋转和水的离心运动来工作的。泵启动前,泵壳体和吸水管必须注满水,然后启动马达,以便泵轴驱动叶轮高速旋转运动和水,水离心运动,扔到叶轮外缘,通过螺旋泵壳体流的压力管道泵。

欣慰的钢笔
不安的电脑
2026-02-14 23:27:33
造成给水泵汽轮机油中进水的主要原因有:

(1)轴封供汽压力过高、轴封回汽不畅,使轴封蒸汽沿轴窜入油挡内造成油中进水;

(2) 轴封径向间隙过大,轴封漏汽沿轴窜入轴承室;

(3) 密封水回水不畅,使得大量密封水通过轴承油挡进入油系统;

(4) 冷却器泄漏;

(5) 净化装置长期停运或长时间没有排放;

(6) 排烟风机出力太大,使轴承室负压增大,使轴封蒸汽易被吸入润滑油系统;

(7) 汽缸结合面密封不严漏汽,造成蒸汽泄漏,进入轴承室。

默默的冬瓜
壮观的咖啡豆
2026-02-14 23:27:33
(1)危及人身安全时,或管道破裂大量热水外流时;

(2)泵组发生强烈振动时(3)给水泵严重汽化时;

(4)泵组内有清晰的金属摩擦时;(5)给水泵电机遭到水害时;

(6)电动机冒烟或起火时;(7)轴承温度包剧升高或冒烟时;

(8)油系统大量漏油,油箱油位下降到危险油位以下又无法补油时;

(9)给水泵流量低于最小流量而再循环门不能开启时;

(10)达到规定的跳闸条件,保护未动作时;(11)给水泵窜轴超过规定时。