请教,什么是真空泵法卸车?优点是什么?缺点是什么?在什么书上介绍?
真空泵法卸车是利用真空负压将罐车里的原料吸到存储罐中
优点是不要重新配置泵,料损失小
缺点无
公司在用
简图在附件中 希望采纳
泵画在简图上应该用驱动轴符号的圆表示。
泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。
泵通常可按工作原理分为容积式泵、动力式泵和其他类型泵三类。除按工作原理分类外,还可按其他方法分类和命名。如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。按照有无轴结构,可分直线泵,和传统泵。
化工设备按其功用,可以分为以下几种通用设备:第一类为化工反应设备,这是化工厂的主要设备之一,在其中原料发生化学反应而生成新的产物;第二类为物料输送设备,包括流体输送设备和固体输送设备,其中流体输送设备包括液体输送设备和气体输送设备;第三类为分离设备,包括固—固分离设备、液—液分离设备、气—气分离设备、固—液分离设备、气—固分离设备和气—液分离设备;第四类为传热设备,其作用是将物料加热和冷却,除此之外还同时具有利用废热的作用;第五类为粉碎设备,它可将固体原料和成品破碎或研磨成细颗粒;第六类为容器,是储存原料、中间产品和成品,以及用作大型反应器的壳体。
(1)流体输送设备。
流体输送设备指为输送流体提供能量的设备,包括液体输送设备和气体输送设备两类。大多数化学反应是在流体状态下进行的。因此流体输送设备种类很多,包括离心泵、鼓风机、压缩机、真空泵等。在化工生产中,常用电力或其他能源来拖动流体输送机械。
①液体输送设备。
输送液体的主要设备是泵。按泵的结构形式的不同可分为离心泵、轴流泵、旋涡泵、往复泵、回转泵等。
图3-50 往复泵原理图往复泵是靠活塞的往复运动而实现液体的吸入和排出的,图3-50是往复泵原理图。往复泵的特点是具有干吸能力,适用于流量小而压力大的地方,并用于输送粘度不太大的液体。
离心泵是靠叶轮的高速旋转使水产生离心力而进行液体的吸入和排出的,如图3-51和图3-52所示。它的特点是转速高,流量均匀,工作稳定,但无干吸能力,不宜用在流量小而压头大的地方。
轴流泵(又叫螺旋泵)的工作原理如图3-53和图3-54所示,轴流泵的工作原理同电风扇相同,当电动机带动叶轮旋转时,液体便从叶轮轴方向输送出来。它的特点是流量大,效率高,结构简单,重量轻,可以输送脏污液体。
图3-51 离心泵简图1—叶轮;2—泵轴;3—排水管;4—叶片;5—填料箱;6—泵壳;7—底阀
图3-52 离心泵
图3-53 轴流泵
图3-54 轴流泵简图
图3-55 齿轮泵简图齿轮泵的工作原理是靠一对相向运动的齿轮的旋转来不断进行液体的吸入和排出,如图3-55所示。它的特点是结构简单,不易出故障,缺点是流量小,较适合于输送粘稠性物料,如油脂等。
②气体输送设备。
气体输送设备在各工业部门应用极为广泛,其作用主要体现在三方面:一是将气体由甲处输送到乙处;二是提高气体的压力;三是降低气体的压力。气体输送机械按所达到的压力可分为四类:
通风机:所产生的压力不高于1500mm水柱;鼓风机:所产生的压力为0.15~2个大气压;压缩机:所产生的压力大于1个大气压;真空泵:所产生的压力低于大气压力。
——通风机可分为离心式通风机和轴流式通风机。离心式通风机是靠风机叶片的高速转动使气体产生离心力而将气体不断吸入和排出。轴流式通风机与电风扇工作原理相同,它通过叶轮旋转带动叶片推动气体,使气体沿转动轴方向前进。轴流式通风机的流量变化宽,主要用于低压场合。
——鼓风机通常可分为离心式鼓风机和罗茨式鼓风机两种。离心式鼓风机是靠叶轮转动使气体产生离心力,从而进行气体的吸入和排出。罗茨式鼓风机的作用原理同齿轮泵相似,它是靠一对特殊形状的转子的转动来进行气体的输送。罗茨式鼓风机与离心式鼓风机的优点是相同的,即送气均匀,转子不需润滑,构造简单,易于制造。罗茨式鼓风机的缺点是运行中噪声大,安装时调整间隙较难。
——压缩机是用来提高气体压力的气体输送设备。通常可分为活塞式压缩机、离心式压缩机和轴流式压缩机。活塞式压缩机是通过活塞的往复运动来实现气体的压缩。它在许多领域已被离心式压缩机所取代。离心式压缩机是通过叶轮的高速旋转来实现气体的逐级压缩而进行气体输送。离心式压缩机是目前使用最广泛的压缩机。轴流式压缩机是通过转子上多排叶片的转动来实现气体的逐级压缩。与离心式压缩机相比,轴流式压缩机效率高,适于大流量场合。
——真空泵也称为抽气机,是用来降低气体压力的设备。通常分为往复式真空泵、液环式真空泵和喷射真空泵。往复式真空泵是通过阀体的往复运动实现配气作用。它的特点是可以抽取含有少量灰尘的气体。液环式真空泵是通过偏心转子的旋转带动泵内液体产生离心力,从而将气体不断地吸入压缩后而排出。它的优点是结构简单,工作平稳可靠,气量均匀,可以抽送含有水蒸气、水分和固体微粒的气体,但是效率较低。喷射真空泵是利用高速流动的流体产生负压的原理进行抽真空。它的特点是启动快,抽气量大,能抽出含有灰尘、具有腐蚀性和易燃易爆的气体,但是抽气效率较低。
(2)固体输送设备。
固体物料运输工作量较大,采用手工运输工具,劳动强度大,工作效率低。采用机械化运输,不仅可以极大地提高效率,而且可以保证生产过程的连续性。固体输送设备较常见的有带式输送机、斗式提升机、螺旋输送机和气动运输机械。
①带式输送机。
带式输送机是借助一条移动的带子来运输粒状物品和成件物品,如图3-56所示。它的特点是操作连续,动作平稳,运输能力强,输送距离长,适合于水平和坡度较小的情况。
②斗式提升机。
斗式提升机相当于竖直的带式提升机。它可将物料从低处运送到高处。斗式提升机的优点是结构紧凑,提升高度大,有良好的密封性。缺点是结构比带式输送机复杂,对过载的敏感性大,料斗和牵引件较易损坏。
③螺旋输送机。
螺旋输送机是靠螺旋的旋转运动推动物料向前移动,如图3-57所示。它主要用以输送粉状、颗粒状和小块物料,不适宜输送易变质的、粘度大的和易结块的物料,其运输距离不易太长,一般小于40m。
图3-56 带式输送机
图3-57 螺旋输送机(3)换热器。
化工生产中,无论是物理过程还是化学过程,都与加热、冷却和保温有关,这些过程统称为传热过程。传热过程是在传热设备中进行的,常见的换热设备称为换热器,也称热交换器,如图3-58和图3-59所示。其工作原理按照传热特征可分为三类:
图3-58 换热器的结构
图3-59 螺旋式换热器①间壁式换热器使冷热两种流体不直接接触,而是用一金属壁隔开,如套管式、加套式、沉浸式、喷淋式、列管式均属此类,其中以列管式换热器应用最为广泛。
②直接接触式换热器使冷热两种流体直接接触进行热量交换,如凉水塔、洗涤冷却塔、直接接触混合冷凝器等。
③蓄热式换热器使冷热两种流体交替通过同一蓄热室,通过蓄热室的耐火砖进行热量交换。热风炉属于蓄热式换热器。如图3-60所示,蓄热室内装有耐火砖,冷热两种气体交替进入通过耐火砖交换热量。
图3-60 热风炉(4)塔设备。
塔设备在化工生产中的应用极为广泛,主要用于蒸馏和吸收过程,也可用于萃取、吸附等单元操作,此外还可作为物料进行化学反应、气体的净化、除尘和冷却等所用的设备。塔设备中常见的有填料塔、板式塔和喷淋塔。
①填料塔。
如图3-61所示,填料塔内装满填料,气体由塔底进入,穿过填料层壁进行热交换。其优点是结构紧凑,传热效果好。向上流动,液体由塔顶通过喷淋设备沿填料表面流下,气体和液体在逆向流动情况下接触进行传质。
②泡罩塔。
泡罩塔属于板式塔,如图3-62所示,气体由塔底引入,液体由顶部送入,气体通过塔盘时,气液两相即进行传质。
图3-61 填料塔
图3-62 泡罩塔
1、作业前准备
(1)吸污车后部尽量接近作业点,驻车。
(2)将回油箱直通旋塞旋柄扳至与进油管轴线呈45°左右夹角,观察进油管,应有润滑油流动。
(3)打开走台箱边门,取出吸污胶管,使之向后摆动,无弯折现象。
2、抽吸作业
(1)将吸污胶管尽可能深的抽入污液,保证管端在作业过程中始终距液面300mm以下。
(2)将四通阀手柄推至与地面垂直。
(3)将变速器挂入空挡,然后起动发动机,分离离合器,将取力器开关向后拉即挂档取力,真空泵开始运转。
(4)打开驾驶室内工具箱,拉出讯响器开关,接通其电源。
(5)操作员可通过后封头上部的观察镜,当液面达到观察镜中部时,应通知驾驶员,同事应迅速将吸污胶管拉离地面或关闭四通阀。在正常情况下,讯响器此时会发出声光讯号,驾驶员接收到信号应减小油门,将取力器开关向前推卸脱档,真空泵停止动转,按入讯响器开关,切断其电源。
(6)将加油箱直通旋塞旋柄板与进邮箱轴线平行即关闭。
(7)冲洗胶管后,将其放回走台箱,关好边门,并使吊杆朝向驾驶室上方。
(8)关闭防溢阀,使其手柄与路轴线垂直即可。
(9)将吸污车驶离作业点。
3、排卸作业
(1)将吸污胶管朝向蓄污池内。
(2)将四通阀门后柄拉至与地面平行,开启防溢阀,使其手柄与管路轴线平行即可。
(3)将变速器挂入空挡,然后起动发动机,分离离合器,将取力器开关向后拉即挂档取力,真空泵开始运转,将变速器挂入空挡,然后起动发动机,分离离合器,将取力器开关向后拉即挂档取力,真空泵开始运转。
(4)罐体内污液排卸完后,驾驶应及时将取力器操纵柄向前推即脱档,真空泵停止运转。
(5)将加油箱直通旋塞旋柄板与进邮箱轴线平行即关闭,冲洗胶管后,将其放回走台箱,关好边门,并使吊杆朝向驾驶室上方。
(6)将吸污车驶离作业点。
中国用研磨方法加工铜镜。
公元前1200年,叙利亚出现磨谷子用的手磨。
两河流域文明在建筑和装运物料过程中,已使用了杠杆、绳索滚棒和水平槽等简单工具。
滑轮技术流传到亚述,亚述人用作城堡上的放箭机构。
埃及出现绞盘,最初用在矿井中提取矿砂和从水井中提水。
埃及初步出现了水钟、虹吸管、鼓风箱和活塞式唧筒等流体机械。
公元前1000年,铁器制作技术自印度传入中原邻近的少数民族,中国西部国家(南越,楚国)出现带铁犁铧的犁。
公元前1000年,中国发明冶铸青铜用的鼓风机。
公元前770年,中国开始使用失蜡铸造方法铸造青铜器。
中原出现可锻铸铁和铸钢。
中国已普遍采用漏壶计时
西元纪年法(阳历)诞生(凯撒公元前48年,经凯撒修正后,这一历法称为凯撒历),罗马文明确定太阳历与24节气。
公元前770年,中国湖北铜绿山春秋战国古铜矿遗址留存木制辘轳轴。
中国出现制造战船的工场。
公元前700年,中国出现滑轮。
公元前600年,古希腊和古罗马进入古典文化时期,这一时期在古希腊诞生了一些著名的哲学家和科学家,他们对古代机械的发展作出了杰出的贡献。如学者希罗著书阐明关于五种简单机械(杠杆、尖劈、滑轮、轮与轴、螺纹)推动重物的理论,这是已知的最早的机械理论书籍。
公元前513年,中国的《左传》记载中国最早的铸铁件——晋国铸刑鼎。
希腊罗马地区木工工具有了很大改进,除木工常用的成套工具如斧、弓形锯、弓形钻、铲和凿外,还发展了球形钻、能拔铁钉的羊角锤、伐木用的双人锯等。此时,长轴车床和脚踏车床已开始广泛使用,用来制造家具和车轮辐条。脚踏车床一直延用到中世纪,为近代车床的发展奠定了基础。
公元前500年,中国湖北随县曾侯乙墓留存春秋战国时期最复杂、最精美的青铜器—曾侯乙尊盘和曾侯乙编钟,编钟由8组65枚组成,采用浑铸法铸造。
中国春秋末期的齐国编成手工艺专著《考工记》。
世界上第一枚冲制法制成的钱币在罗马诞生,这是金属加工方面的一大成就,是现代成批生产技术的萌芽。
公元前476年,中国出现用天然磁铁制成的指南针—司南。
中国开始用叠铸法铸造青铜刀币。
中国河北易县燕下都遗址留存的钢剑中有淬火组织,矛、箭铤中有正火组织。
中国河南洛阳留存经脱碳退火的白口铸锛,表面已脱碳成钢。
中国河南信阳留存汞齐鎏金器物。
公元前476年,中国山西永济县蘖家崖留存青铜棘齿轮(直径25毫米,40齿)
中国河北武安午汲古城遗址留存铁制棘齿轮。
公元前400年,中国的公输班发明石磨。
公元前220年,希腊的阿基米德创制螺旋提水工具。
希腊的阿基米德提出物体浮动理论——阿基米德原理。
古希腊人在手磨的基础上制成了轮磨。
中国西安兵马俑出土的青铜秦剑大约诞生于此时期。
公元前206年,中国西汉出现青铜铸件透光镜。
公元前206年,齿轮在欧洲出现,最早的应用是装在战车用来记录行车里程的里程计上。
中国四川成都市站东乡留存滑车。
罗马在单轮滑车的基础上发明复式滑车。它最早应用是在建筑上起吊重物。
公元前113年,中国河北满城西汉中山靖王刘胜墓留存经过渗碳处理的佩剑。
公元前110年前后,罗马桔槔式提水工具和吊桶式水车使用范围扩大,涡形轮和诺斯水磨等新的流体机械出现,前者靠转动螺纹形杆,将水由低处提到高处,主要用于罗马城市的供水。后者用来磨谷物,靠水流推动方叶轮而转动,其功率不到半马力。
公元前100年,罗马功率较大的维特鲁维亚水磨出现,水轮靠下冲的水流推动,通过适当选择大小齿轮的齿数,就可调整水磨的转速,其功率约三马力,后来提高到五十马力,成为当时功率最大的原动机。
公元元年至1700年
公元1世纪,亚历山大的西罗著有《气动力学》,其中记载利用蒸汽作用旋转的气转球(反动式汽轮机雏形)。同时,西罗发明的汽转球(又叫风神轮)出现。汽转球作为第一个把蒸汽压力转化为机械动力的装置,它也是最早应用喷气反作用原理的装置。
公元9年,中国制出新莽卡尺。
25~221年,中国的毕岚发明翻车(龙骨水车)。
中国的杜诗发明冶铸鼓风用水排。
中国出现水轮车(水轮机雏形)。
78~139年,中国的张衡发明浑天仪(水运浑象),由漏水驱动,能指示星辰出没时间。
2世纪,中国用花纹钢制造宝刀、宝剑——类似大马士革刚。
105年,中国的蔡佗监造出良纸。
220~230年,中国出现记里鼓车。
235年,中国的马钧发明由齿轮传动的指南车。
265—420年,中国的杜预发明由水轮驱动的连机碓和水转连磨。
4世纪,地中海沿岸国家在酿酒压力机上应用螺拴和螺母。
西方机械技术的发展因古希腊和罗马的古典文化处于消沉而陷于长期停顿。黑死病等瘟疫的蔓延,是西方世界陷入长达400年的黑暗。
5~6世纪,中国发明磨车。
420~589年,中国出现车船。
550—580年,中国的綦母怀文发明灌钢技术。
618—907年,中国西安沙坡村留存银质被中香炉,结构奇巧。
700年,波斯开始使用风车。
953年,中国铸造大型铸铁件——沧州铁狮子(重5000千克以上)。
1041~1048年,中国的毕升发明活字印刷术。
1088年,中国的苏颂、韩公廉制成带有擒纵机构的水运仪象台。
1097年,中国在山西太原晋祠铸有四个大铁人——宋代铁人。
1127~1279年,中国发明水转大纺车。
1131~1162年,中国记载走马灯(燃气轮机雏形)。
1263年,中国的薛景石完成木制机具专著《梓人遗制》。
1330年,中国的陈椿在《敖波图》中记载化铁炉(搀炉)。
1332年,中国用铜制造大炮。
文艺复兴时代开始,意、法,英等国相继兴办大学,发展自然科学和人文科学,培养人才,西方机械技术开始恢复和发展。
1350年,意大利的丹蒂制成机械钟,以重锤下落为动力,用齿轮传动。
1395年,德国出现杆棒车床
1439年,德国谷腾堡发明金属活字凸版印刷机。
1608年,荷兰的李普希发明望远镜。
1629年,意大利的布兰卡设计出靠蒸汽冲击旋转的转轮(冲动式汽轮机的雏形)。
1637年,中国刊印了宋应星的科学技术著作《天工开物》,书中对中国古代生产器具和技术有详细记载。
1643年,意大利的托里拆利通过实验测定标准大气压值为760毫米汞柱高奠定了流体静力学和液柱式压力测量仪表的基础。
1660年,法国的帕斯卡提出静止液体中压力传递的基本定律,奠定了流体静力学和液压传动的基础。
1650~1654年,德国的盖利克发明真空泵,1664年他在马德堡演示了著名的马德堡半球实验,首次显示了大气压的威力。
1656~1657年,荷兰的惠更斯创制单摆机械钟。
1665年,荷兰的列文胡克和英国的胡克发明显微镜。
1698年,英国的萨弗里制成第一台实用的用于矿井抽水的蒸汽机—“矿工之友”。它开创了用蒸汽作功的先河。
公元1700年~1800年
1701年,英国的牛顿提出对流换热的牛顿冷却定律。
1705年,英国的纽科门发明大气活塞式蒸汽机,取代了萨弗里的蒸汽机。功率可达六马力。
1709~1714年,德国的华佗海特先后发明酒精温度计和水银温度计,并创立以水的冰点为32度、沸点为212度、中间分为180度的华氏温标。
1713~1735年,英国的达比发明用焦炭炼铁的方法。1735年,达比之子将焦炭炼铁技术用于生产。
1733年,法国的卡米提出齿轮啮合基本定律。
1738年,瑞士的丹尼尔第一·贝努利建立无粘性流体的能量方程—贝努利方程。
1742~1745年,瑞典的摄尔西乌斯创立以水的冰点为100度、沸点为0度的温标。1745年,瑞典的林奈将两个固定点颠倒过来,即成为摄氏温标。
18世纪中叶,法国的拉瓦锡和俄国的罗蒙诺索夫提出燃烧是物质氧化的理论。
1755年,瑞士的欧拉建立粘性流体的运动方程——欧拉方程。
1764年,英国的哈格里夫斯发明竖式、多锭、手工操作的珍妮纺纱机。
1769年,英国的瓦特取得带有独立的实用凝汽器专利,从而完成了蒸汽机的发明。这种蒸汽机后于1776年投入运行,热效率达2~4%。
法国的居诺制成三轮蒸汽汽车,这是第一辆能真正行驶的汽车。
1772~1794年,英国的瓦洛和沃恩先后发明球轴承。
1774年,英国的威尔金森发明较精密的炮筒镗床,这是第一台真正的机床—加工机器的机器。它成功地用于加工汽缸体,使瓦特蒸汽机得以投入运行。
1785年,法国的库仑用机械啮合概念解释干摩擦,首次提出摩擦理论。
英国的卡特赖特发明动力织布机,完成了手工业和工场手工业向机器大工业的过渡。
1786年,英国的西兹发明割穗机。
1787年,英国的威尔金森建成第一艘铁船。
1789年,法国首次提出“米制”概念。1799年制成阿希夫米尺(档案米尺)
1790年,英国的圣托马斯发明缝制靴鞋用的链式单线迹手摇缝纫机,这是世界上第一台缝纫机。
18世纪90年代,英国的边沁先后发明平刨床、单轴木工铣床、镂铣机和木工钻床。
1792年,英国的莫兹利发明加工螺纹的丝锥和板牙。
1794年,英国的威尔金森建成冲天炉。
1795年,英国的布拉默发明水压机。
1797年,英国的莫兹利发明带有丝杠、光杠、进给刀架和导轨的车床,可车削不同螺距的螺纹。
1799年,法国的蒙日发表《画法几何》一书,使画法几何成为机械制图的投影理论基础。
公元1800年~1900年
19世纪初,英国的扬提出弹性模量概念,揭示了应变与应力间的关系。
1803年,英国的唐金制成长网造纸机。
英国的特里维希克制成第一辆利用轨道的蒸汽机车。
1804年,法国的毕奥提出热传导规律,并由法国的傅里叶最早应用,因而称傅里叶定律。
1807年,英国的布律内尔发明木工圆锯机。
1807年,英国的富尔顿建成第一艘明轮推进的蒸汽机船“克莱蒙脱”号。
1809年,英国的迪金森制成圆网造纸机。
1812年,德国的柯尼希发明圆压平凸板印刷机。
1814年,1814年,英国的斯蒂芬森制成铁路蒸汽机车“皮靴”号。1829年,斯蒂芬森父子的“火箭”号蒸汽机车在机车比赛中以速度58公里/小时、载重3137吨安全运行112.6公里的成绩获奖。
1816年,苏格兰的斯特林发明热气机。
1817年,英国的罗伯茨创制龙门刨床。
1818年,美国的惠特尼创制卧式铣床。
德国的德赖斯发明木制、带有车把、依靠双脚蹬地行驶的两轮自行车。
1820年前后,英国的怀特制成第一台既能加工圆柱齿轮、又能加工圆锥齿轮的机床。
1822年,法国的涅普斯进行照相制版实验,并制成世界上第一张照片。1826年,他又用暗箱拍摄出一张照片。
1827~1845年,法国的纳维和英国的斯托克斯建立粘性不可压缩流体的运动方程—纳维—斯托克斯方程。
1830年,法国出现火管锅炉。
1833~1836年,美国的奥蒂斯设计制造单斗挖掘机械。
1834年,美国的佩奇和费伊分别发明榫槽机和开榫机。
1834~1844年,美国的帕金斯和戈里分别制成以乙醚为工质的和以空气为工质的制冷机。
1835年,英国的惠特沃斯发明滚齿机。
1836年,美国的麦考密克创制马拉联合收割机(康拜因)。
1837年,俄国的雅可比发明电铸方法。
1838年,俄国的雅可比用蓄电池给直流电动机供电以驱动快艇,这是首次使用电力传动装置。
美国的布鲁斯首次用压力铸造法生产铅字。
1839年,法国的达盖尔制成第一台实用的银版照相机,用它能拍出清晰的照片。
苏格兰的庞顿在其报告中阐明了现代照相制版方法。
英国的史密斯建成螺旋桨推进的蒸汽机船“阿基米德”号。
美国的巴比特发明锡基轴承合金(巴氏合金)。
1840~1850年,英国的焦耳发现电热当量,并用各种方式实测热功当量。他的实验结果导致科学界抛弃“热质说”而公认热力学第一定律。
1841年,英国的惠特沃斯设计英制标准螺纹系统。
法国的蒂莫尼埃设计和制造实用的双线链式线迹缝纫机。
1842年,英国的内史密斯发明蒸汽锤。
1848年,中国的丁拱辰著《演炮图说辑要》,其中的西洋火轮车、火轮船图说是中国第一部关于蒸汽机、火车和轮船的论述。
1845年,美国的菲奇发明转塔车床(六角车床)。
英国的汤姆森取得充气轮胎专利。1888年以后分别由英国的邓洛普和法国米西兰橡胶公司用于自行车和汽车车胎。
英国的柯拜在广州黄埔设立柯拜船舶厂,这是中国最早的外资机械厂。
1846~1851年,美国的豪取得曲线锁式线迹缝纫机专利;美国的胜家设计制造了这种缝纫机,从此缝纫机被大量生产。
1847年,世界上最早的机械工程学术团体—英国工程师学会成立。
法国的波登制成波登管压力表。
美国的霍伊发明轮转(圆压圆凸版)印刷机。
1848年,英国的开尔文(即汤姆森)创立热力学温标。
法国的帕尔默发明外径千分尺。
德国发明万能式轧机。
1849年,美国的弗朗西斯发明混流式水轮机。
1850~1851年,德国的克劳修斯和英国的开尔文分别提出热力学第二定律。
1850~1880年,英国发明各种气体保护无氧化加热方法。
1856年,德国工程师协会成立。
英国的贝塞麦发明转炉炼钢。
1856~1864年,英国的西门子和法国的马丁发明平炉炼钢。
1857年,英国的贝塞麦发明连续铸造方法。
1858年,美国的布莱克发明颚式破碎机。
1860年,法国的勒努瓦制成第一台实用的煤气机(也是第一台内燃机)。
德国的基尔霍夫通过人造空间模拟绝对黑体,建立基尔霍夫定律。
1861年,中国的曾国藩创办安庆军械所,这是中国人自办的第一家机械厂。
1862年和1865年先后造出中国第一台蒸汽机和第一艘木质蒸汽机船“黄鹊”号。
1862年,德国的吉拉尔发明液体静压轴承。
1863年,英国的索比用显微镜观察到钢铁的金相组织,并于1864年展出钢的金相显微照片。
1864年,法国的若塞尔最早研究刀具几何参数对切削力的影响。
1865年,中国的曾国藩、李鸿章等创办江南制造总局,这是中国近代机械工业的开端(1953年更名为江南造船厂)。
1867年,德国的沃勒在巴黎博览会上展出车轴疲劳试验结果,提出疲劳极限概念,奠定了疲劳强度设计的基础。
1868年,美国的希鲁斯发明打字机。
英国的穆舍特制成含钨的合金工具钢。
1868~1887年,英国和美国先后出现带式输送机和螺旋输送机。
1870年,俄国的季梅最早解释切屑的形成过程。
1872~1874年,贝尔和德国的林德分别制成氨蒸汽压缩式制冷机。
1873年,美国的斯潘塞制成单轴自动车床,不久又制成多轴自动车床。
1874年,英国的瑞利发现莫尔条纹现象。
英国的劳森制成链条传动、后轮驱动的现代型自行车。
1875年,德国的勒洛建立构件、运动副、运动链和机构运动简图等概念,奠定了机构学的基础。
1876年,德国的奥托创制往复活塞式、单缸、四冲程内燃机。
美国制成万能外圆磨床,首次具有现代磨床的基本特征。
1877年,法国的凯泰和瑞士的皮克特首先获得雾状液态氧。1892年,英国的杜瓦制成液化气体容器。
1878~1884年,奥地利的斯忒藩和玻耳兹曼建立辐射换热的斯忒藩一玻耳兹曼定律。
1879年,德国的西门子制造的电力机车试车成功。
世界上第一艘钢船问世。
瑞典的拉瓦尔发明离心分离机。
1880年,美国工程师学会成立。
1881年,法国出现蓄电池电力汽车。
中国胥各庄修车厂制出中国第一台蒸汽机车“中国火箭”号。
1882年,瑞典的拉瓦尔制成第一台单级冲动式汽轮机。
1883年,德国的戴姆勒制成第一台立式汽油机,1885年取得专利。
英国的雷诺发现流体的两种流动状态—层流和湍流,并建立湍流的基本方程—雷诺方程。
1884年,英国的帕森斯制成多级反动式汽轮机。
1885年,德国的本茨创制三轮汽油机汽车,1886年取得世界上第一个汽车专利。
德国的戴姆勒创制汽油机摩托车。
1885~1887年,俄国的别那尔多斯和美国的汤普森分别发明电弧焊和电阻焊。
1886年,德国的戴姆勒创制四轮汽油机汽车。
美国的赫谢尔用文丘里管制成测量水流的装置,这是最早的流量测量仪器。
英国的雷诺建立流体动压润滑理论。
1888年,德国的奥斯蒙德提出钢、铁与生铁的金相转变理论,后由英国的奥斯汀制成铁碳相图。
1889年,第一届国际计量大会首次正式定义“米”为:“在零撮氏度,保存在国际计量局的铂铱米尺的两中间刻线间的距离”。
美国的佩尔顿发明水斗式水轮机。
1890年,美国的艾姆斯制成百分表和千分表。
1891年,美国的艾奇逊制成最早的人造磨料—碳化硅。
1892年,美国的弗罗希利奇创制农用拖拉机。
1895年,德国的伦琴发现X射线。
1896年,瑞典的约翰森发明成套量快。
1897年,德国的狄塞尔创制柴油机。
美国的费洛斯创制插齿机。
英国的帕森斯建成第一艘汽轮机船“透平尼亚”号。
日本机械工程师学会成立。
1898年,美国的拉普安特创制卧式内拉床。
美国的泰勒和怀特发明高速钢。
1899年,法国的埃鲁发明电弧炉炼钢法。
公元1900年~现在
20世纪初,美国的柯蒂斯创制速度级汽轮机。
英国的科克尔和法国梅斯纳热首次对车轮、齿轮、轴承等进行实验应力分析。
1901年,法国发明气焊。
1903年,美国的莱特兄弟制成世界上第一架真正的飞机并试飞成功。
美国的福特建立福特汽车公司,开始大量生产汽车。1908年,福特研制的T型汽车投入市场。
第一艘柴油机船“万达尔”号下水。
1904年,德国的普朗特建立边界层理论。
美国的鲁贝尔发明胶版印刷机。
1906年,法国的勒梅尔和阿芒戈制成第一台能输出功率的燃气轮机(但效率仅3~4%,未获实用)。
1906~1914年,瑞士的比希试制复合式发动机。
1906年,德国的能斯脱发现“热定理”,1912年,经德国的普朗克和西蒙修改为热力学第三定律。
1907年,美国的泰勒研究切削速度对刀具寿命的影响,提出著名的泰勒公式。
1908年,中国广州均和安机器厂制出中国第一台内燃机(单缸卧式8马力柴油机)。
1911年,美国的泰勒发表《科学管理原理》一书,首次提出“科学管理”概念。
美籍匈牙利人卡门用空气动力学的观点阐明卡门涡街。
美国的格林里公司创制组合机床。
德国的杜衣斯堡人工合成橡胶。
1912年,英国的布里尔利和德国的施特劳斯等分别制成铬不锈钢和铬镍不锈钢。
中国的詹天佑发起成立中华工程学会,后成为中国工程师学会。
1913年,瑞典制成第一辆电力传动的柴油机车。
美国福特汽车公司建成最早的汽车装配流水线。
1915年,中国第一家钟厂——中宝时钟厂在烟台创办。
上海荣昌泰机器厂造出中国第一台机床(4英尺脚踏车床)。
1919年,中国最早的缝纫机厂—协昌、润昌缝纫机行在上海创办。
1920年,德国的霍尔茨瓦特制出第一台实用的燃气轮机(按等容加热循环工作)。
奥地利的卡普兰发明轴流转桨式水轮机。
捷克斯洛伐克的恰佩克在其科幻剧作《罗素姆万能机器人》中首次使用“机器人”(Robot)一词。
英国的格里菲思进行断裂力学分析。
1923年,德国的施勒特尔发明硬质合金。
1923~1927年,德国的柯斯特尔设计制造柯式干涉仪。
1926年,美国建成第一条自动生产线(加工汽车底盘)。
1927年,美国的伍德和卢米斯进行超声加工试验。1951年,美国的科恩制成第一台超声加工机。
1934年,德国的克诺尔和鲁斯卡制成透射电子显微镜。
1934年,中美合资的杭州中央飞机制造厂成立。曾制造出全金属轰炸机。
1935~1936年,中国的刘仙洲等发起成立中国机械工程学会。
1938年,美国的卡尔森首创静电复印技术。
德国的德古萨公司发明陶瓷刀具。
1938~1940年,美国的厄恩斯特和麦钱特用高速摄影机拍摄切屑的形成过程,并解释了切屑的形成机理。
1939年,瑞士制成发电用燃气轮机(按等压加热循环工作)。
1941年,瑞士制成第一辆燃气轮机机车。
1942年,美国的费密等建成第—座可控的链式核裂变原子反应堆。
1943年,苏联的拉扎连科夫妇发明电火花加工。
20世纪40年代,苏联发明阳极机械切割。
1947年,第一艘燃气轮机船“加特利克”号问世。
英国的莫罗和威廉斯制得球墨铸铁。
20世纪40年代,英国的泰勒森设计出多面棱体。
1950年,联邦德国的施泰格瓦尔特发明电子束加工。
1952年,美国帕森斯公司制成第一台数字控制机床。
美国利普公司制成电子手表。
1954年,美国建成第一艘核动力船——“鹦鹉螺”号核潜艇。
1955年,美国研究成功等离子弧加工(切割)方法。
1956年,中国第一汽车制造厂(长春)建成投产。
中国建立机床研究所。
中国成立工具科学研究院,1957年改组为工具研究所。
1957年,联邦德国的汪克尔研制成旋转活塞式发动机。
1958年,美国的卡尼-特雷克公司研制成第一个加工中心。
美国研制成工业机器人。
美国的舒罗耶发明实型铸造。
世界工程组织联合会(WFEO)成立。
美国的汤斯和肖洛发表形成激光的论文。1960年,美国的梅曼研制成红宝石激光器。
中国最大的轴承厂——洛阳轴承厂建成投产。
中国最大的手表厂——上海手表厂建成投产。
1959年,中国第一拖拉机厂(洛阳)建成投产。
美国的马瑟取得谐波传动专利。
20世纪50年代,美国发明电解磨削方法。
苏联和美国在生产中应用电解加工方法。
液体喷射加工方法开始在生产中应用。
美国用有限元法进行应力分析。
1960年,第十一届国际计量大会第二次定义“米”为:Kr原子在2P10和5d5能级之间跃迁时,其辐射光在真空中波长的1650763.73倍”。
中国最大的重型机器厂—第一重型机器厂(齐齐哈尔)建成投产。
1962年,美国本迪克斯公司首次在数控铣床上实现最佳适应控制(ACO)。
1964年,美国的格罗弗发明热管。
1967年,美国的福克斯首次提出机构最优化概念。
英国莫林斯公司根据威廉森提出的柔性制造系统的基本概念研制出“系统24”。
1969年,中国第二汽车制造厂(湖北)开始大规模动工建设。1975年建成2.5吨越野汽车生产基地。
1972年,美国通用电器公司生产聚晶人造金刚石和聚晶立方氮化鹏刀片。
1976年,日本发那科公司首次展出由4台加工中心和1台工业机器人组成的柔性制造单元。
1979年,美国的徐南朴等指出摩擦系数等于机械啮合摩擦系数、粘着摩擦系数、犁削摩擦系数之和。
1983年,第17届国际计量大会第3次定义“米”为:“光在真空中1/299792458秒的时间间隔内所行进的路程长度”。(end)
具体可查看化工工艺流程图制图图例HG/T20519(下图为标准中的截图)
第二图:
第三图:
扩展资料:
CAD首先它是一个可视化的绘图软件,许多命令和操作可以通过菜单选项和工具按钮等多种方式实现。而且具有丰富的绘图和绘图辅助功能,如实体绘制、关键点编辑、对象捕捉、标注、鸟瞰显示控制等。
它的工具栏、菜单设计、对话框、图形打开预览、信息交换、文本编辑、图像处理和图形的输出预览为用户的绘图带来很大方便。其次它不仅在二维绘图处理更加成熟,三维功能也更加完善,可方便地进行建模和渲染。
二维CAD的基本功能。
·平面绘图:能以多种方式创建直线、圆、椭圆、圆环多边形(正多边形)、样条曲线等基本图形对象。
·绘图辅助工具:提供了正交、对象捕捉、极轴追踪、捕捉追踪等绘图辅助工具。正交功能使用户可以很方便地绘制水平、竖直直线,对象捕捉可 帮助拾取几何对象上的特殊点,而追踪功能使画斜线及沿不同方向定位点变得更加容易。
·编辑图形:CAD具有强大的编辑功能,可以移动、复制、旋转、阵列、拉伸、延长、修剪、缩放对象等。
·标注尺寸:可以创建多种类型尺寸,标注外观可以自行设定。
·书写文字:能轻易在图形的任何位置、沿任何方向书写文字,可设定文字字体、倾斜角度及宽度缩放比例等属性。
·图层管理功能:图形对象都位于某一图层上,可设定对象颜色、线型、线宽等特性。
·三维绘图:可创建3D实体及表面模型,能对实体本身进行编辑。
·网络功能:可将图形在网络上发布,或是通过网络访问AutoCAD资源。
·数据交换 :提供了多种图形图像数据交换格式及相应命令。
二维转三维
solprof 命令:在图纸空间中创建三维实体的轮廓图像。
solview 命令:使用正交投影法创建布局视口以生成三维实体及体对象的多面视图与剖视图。
soldraw 命令:在用 solview 命令创建的视口中生成轮廓图和剖视图。
soldraw 命令与 solprof 命令的使用方法及区别:
soldraw 命令需与 solview 命令配合使用,只能在用 solview 命令创建的视口中生成轮廓图和剖视图。
solprof 命令可以单独使用,即在图纸空间中的任何视图上都可以使用,可以创建三维实体的轮廓图像。
参考资料来源:百度百科-cad
2、气相色谱分析的原理:气相色谱分析是一种物理分离分析技术,分析程序是先将取样变压器油经真空泵脱气装置将溶解在油中的气体分离出来,用注射器定量注入色谱分析仪,在载气的推动下流过色谱柱,混合气体经色谱柱分离后,通过鉴定器来检测。被分离的各气体组分依一定次序逐一流过鉴定器将气体浓度变为电信号,再由记录仪记录下来,并依各组分的先后次序排列成一个个脉冲尖峰,形成了色谱图,一个脉冲峰表示一种气体组分,峰的高度或面积则反应该气体的浓度。色谱图对被分析的气体既定性又定量分析,再经过峰高计算出各气体组分的浓度。
3、变压器油色谱分析在绝缘监督中的作用:
(1)可检测设备内部故障,预报故障的发展趋势,使实际存在的故障得到有计划且经济的检修,避免设备损坏和无计划的停电。
(2)当确诊设备内部存在故障时,要根据故障的危害性、设备的重要性、负荷要求和安全及经济来制定合理的故障处理措施,确保设备不发生损坏。
(3)对于已发生事故的设备,有助于了解设备事故的性质和损坏程度,以指导检修。