三螺杆泵轴套与轴径间隙抱死的原因
三螺杆泵轴套与轴径间隙抱死的原因
一、原因分析根据滑动轴承的工作情况,一般三螺杆泵衬套孔与轴配合是间隙配合,零件图上轴径与衬套孔径的尺寸偏差,一般是按平均工作温度20℃时保证轴与衬套孔间具有合理间隙变化而确定的。影响滑动轴承过热故障的因素很多,在轴承结构设计合理,材料选用正确的情况下,滑动轴承过热主要是轴承径向间隙的大小装配不当及使用不当造成的。滑动轴承径向间隙对轴承过热故障的影响,滑动轴承的径向间隙Δ就是轴承孔直径与轴颈直径之差,滑动轴承要留有一定的径向间隙,其作用如下:是实现轴与轴承活动联接的起码条件是控制轴的运转精度的保证是形成液体润滑的重要条件。因此,滑动轴承的径向间隙十分重要,过大或过小都极为有害。间隙过小,难以形成润滑油膜,摩擦热不易被带走,使轴承过热,严重时会“抱轴”间隙过大,油膜也难以形成,会降低机器的运转精度,会产生剧烈振动和噪音,甚至导致烧瓦事故。
二、滑动轴承径向间隙的确定螺杆泵的技术性能:轴颈转速n=2950r/min,轴颈直径d=30mm;电机为同步电机,润滑油为渣油,轴承材料为锡基铜。滑动轴承径向间隙的理论值滑动轴承径向间隙Δ=K·d。式中:K———高精度轴承系数,由《机械设计手册》查得K=0.0008。d———轴颈的直径,d=30mm。代入得:Δ=0.02mm由《机械设计手册》查得,最大间隙Δmax=0.10mm。对原轴套测量,数据及位置:对轴径进行测量,对应位置尺寸数据:轴径1:29.99mm29.94mm29.90mm轴径2:29.92mm29.90mm29.90mm轴套1:30.01mm29.97mm29.92mm轴套2:29.94mm29.92mm29.915mm滑动轴承径向间隙的实际值最大间隙:主动杆:0.03mm从动杆:0.02mm。该轴承在实际使用过程中,由于间隙过小,摩擦热不易被带走,加之润滑油为介质渣油,杂质较多,易进入间隙,使轴承过热,严重时会“抱轴”,出现烧瓦现象。
三、预防及改进措施为了防止轴承产生过热故障,若把径向间隙调大一些,Δ=0.03mm。这时该轴承的配合副虽能正常工作,但其使用寿命却极大缩短,因此在确定轴承径向间隙时,应保证轴承在正常工作的前提下尽可能留小些。在轴承装配后,首先应按磨合试运转规范进行良好的磨合及试运转,然后再逐渐加载加速,使轴和轴承的配合表面凸起处磨平,最后再投入正常运行。否则,即使间隙调得并不小,但却因为装配后不进行磨合试运转,而投入正常运行,从而导致轴承过热甚至烧瓦。对此,滑动轴承径向间隙应控制在0.10mm~0.15mm。滑动轴承径向间隙对轴承过热和寿命影响很大,因此对于径向间隙,一定要严格控制在合理的范围内。在确定轴承径向间隙时,要全面考虑影响径向间隙的因素,除了考虑轴的直径、转速、载荷及机器的精度外,还应考虑以下几点:a.轴承材料。轴承材料不同,膨胀系数不同,间隙也就不同。b.轴和轴承表面的粗糙度。c.轴颈和轴承的几何形状和相互位置误差(即圆度、圆柱度、同轴度等)。d.轴承的工作温度。f.起动工况的突然变化。
四、结论不同介质和不同转速对螺杆泵轴套间隙的要求是不一样的。通过上述计算及分析,得出了轴套的最佳间隙数据。设备改造一年来运行一切正常,验证了我们的分析是可行的。
1.密封泄漏点种类
泵用机械密封种类繁多,型号各异,但泄漏点主要有五处:(l)轴套与轴间的密封;(2)动环与轴套间的密封;(3)动、静环间密封;(4)对静环与静环座间的密封;(5)密封端盖与泵体间的密封。
2密封.泄漏原因分析及判断
安装静试时泄漏。机械密封安装调试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。
试运转时出现的泄漏。泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:(l)操作中,因抽空、气蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离;(对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤;(3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量;(4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座;(5)工作介质中有颗粒状物质,运转中进人摩擦副,探伤动、静环密封端面;(6)设计选型有误,密封端面比压偏低或密封材质冷缩性较大等。上述现象在试运转中经常出现,有时可以通过适当调整静环座等予以消除,但多数需要重新拆装,更换密封。
由于两密封端面失去润滑膜而造成的失效:a)因端面密封载荷的存在,在密封腔缺乏液体时启动泵而发生干摩擦;b)介质的低于饱和蒸汽压力,使得端面液膜发生闪蒸,丧失润滑;c)如介质为易挥发性产品,在机械密封冷却系统出现结垢或阻塞时,由于端面摩擦及旋转元件搅拌液体产生热量而使介质的饱和蒸汽压上升,也造成介质压力低于其饱和蒸汽压的状况。
由于腐蚀而引起的机械密封失效:a)密封面点蚀,甚至穿透。b)由于碳化钨环与不锈钢座等焊接,使用中不锈钢座易产生晶间腐蚀;c)焊接金属波纹管、弹簧等在应力与介质腐蚀的共同作用下易发生破裂。
由于高温效应而产生的机械密封失效:a)热裂是高温油泵,如油渣泵、回炼油泵、常减压塔底泵等最常见的失效现象。在密封面处由于干摩擦、冷却水突然中断,杂质进入密封面、抽空等情况下,都会导致环面出现径向裂纹;b)石墨炭化是使用碳—石墨环时密封失效的主要原因之一。由于在使用中,如果石墨环一旦超过许用温度(一般在-105~250℃)时,其表面会析出树脂,摩擦面附近树脂会发生炭化,当有粘结剂时,会发泡软化,使密封面泄漏增加,密封失效;c)辅助密封件(如氟橡胶、乙丙橡胶、全橡胶)在超过许用温度后,将会迅速老化、龟裂、变硬失弹。现在所使用的柔性石墨耐高温、耐腐蚀性较好,但其回弹性差。而且易脆裂,安装时容易损坏。
由于密封端面的磨损而造成的密封失效:a)摩擦副所用的材料耐磨性差、摩擦系数大、端面比压(包括弹簧比压)过大等,都会缩短机械密封的使用寿命。对常用的材料,按耐磨性排列的次序为:碳化硅—碳石墨、硬质合金—碳石墨、陶瓷—碳石墨、喷涂陶瓷——碳石墨、氮化硅陶瓷——碳石墨、高速钢——碳石墨、堆焊硬质合金——碳石墨。b)对于含有固体颗粒介质,密封面进入固体颗粒是导致使密封失效的主要原因。固体颗粒进入摩擦副端面起研磨剂作用,使密封发生剧烈磨损而失效。密封面合理的间隙,以及机械密封的平衡程度,还有密封端面液膜的闪蒸等都是造成端面打开而使固体颗粒进入的主要原因。c)机械密封的平衡程度β也影响着密封的磨损。一般情况下,平衡程度β=75%左右最适宜。β<75%,磨损量虽然降低,但泄漏增加,密封面打开的可能性增大。对于高负荷(高PV值)的机械密封,由于端面摩擦热较大,β一般取65%~70%为宜,对低沸点的烃类介质等,由于温度对介质气化较敏感,为减少摩擦热的影响,β取80%~85%为好。
因安装、运转或设备本身所产生的误差而造成机械密封泄漏:
由于安装不良,造成机械密封泄漏。主要表现在以下几方面:1)动、静环接触表面不平,安装时碰伤、损坏;2)动、静环密封圈尺寸有误、损坏或未被压紧;3)动、静环表面有异物;4)动、静环V型密封圈方向装反,或安装时反边;5)轴套处泄漏,密封圈未装或压紧力不够;6)弹簧力不均匀,单弹簧不垂直,多弹簧长短不一;7)密封腔端面与轴垂直度不够;8)轴套上密封圈活动处有腐蚀点。
设备在运转中,机械密封发生泄漏的原因主要有:1)泵叶轮轴向窜动量超过标准,转轴发生周期性振动及工艺操作不稳定,密封腔内压力经常变化等均会导致密封周期性泄漏; 2)摩擦副损伤或变形而不能跑合引起泄漏;3)密封圈材料选择不当,溶胀失弹;4)大弹簧转向不对;5)设备运转时振动太大;6)动、静环与轴套间形成水垢使弹簧失弹而不能补偿密封面的磨损;7)密封环发生龟裂等。
泵在停一段时间后再启动时发生泄漏,这主要是因为摩擦副附近介质的凝固、结晶,摩擦副上有水垢、弹簧腐蚀、阻塞而失弹。
泵轴扰度太大。
透过改良设计是可以减少此现象的,我在西德进口的油泵上就见过一种优良的设计。
,运转时震动太大导致螺母松动,或者是泵反转引起的,可以加弹簧垫或止推垫防止松动
,既然是离心的,运动最好在用前检查已保安全。
还有检查是不是出口管道上没有装
逆止阀
而停泵的时候又未及时关出口阀门,看装的时候是不是已经拧紧。
一、 进水管和泵体内有空气
(1)水泵启动前未灌满足够的水,有时看上去灌的水已从放气孔溢出,但未转动泵轴交空气完全排出,致使少许空气残留在进水管或泵体中。
(2)与水泵接触的进水管的水平段逆水流方向应用0.5%以上的下降坡度,连接水泵进口的一端为较高,不要完全水平。如果向上翘起,进水管内会存留空气,降低了水管和水泵中的真空度,影响吸水。
(3)水泵的填料因长期使用已经磨损或填料压得过松,造成大量的水从填料与泵轴轴套的间隙中喷出,其结果是外部的空气就从这些间隙进入水泵的内部,影响了提水。 机械密封的泵机械密封损坏泄露。
(4)进水管因长期潜在水下,管壁腐蚀出现孔洞,水泵工作后水面不断下降,当这些孔洞露出水面后,空气就从孔洞进入民进水管。
(5)进水管弯管处出现裂痕,进水管与水泵连接处出现微小的间隙,都有可能使空气进入进水管。
二、水泵转速过低
(1)人为的因素。有部分用户因原配电机损坏,就随意配上另一台电动机带动,结果造成了流量小、扬程低甚至不上水的后果。
(2)水泵本身的机械故障。叶轮与泵轴紧固螺母松脱或泵轴变形弯曲,造成叶轮多移,直接与泵体磨擦,或轴承损坏,都有可能降低水泵的转速。
自吸泵吸不上水的原因,自吸泵吸不上水的排除方法
自吸泵吸不上水的原因有很多,最常见的自吸泵吸不上水的原因就是自吸泵进口管道漏气的原因所致,因为自吸泵进口管道漏气是很难检查出来的。
例如如下案例新自吸泵安装调试使用时客户怎么操作都没有办法让自吸泵吸上水来,并且电话里面已经很肯定自吸泵进口管道保证不漏气了、所以我公司售后人员只能计划自己亲自到现场查看具体情况,我公司售后人员到现场后先开泵观察情况发现水只能抽到1米高左右再也不向上走、这说明管道还是有漏气现象随后停机观察并听管道是否有吸气声、依靠耳朵听听不到吸气声音,我们判断有可能是管道漏气点较多导致管道及泵腔里面形成不了较高的负压所致所以听不到吸气的声音、任何人遇到这种情况没有大型的真空泵或者空压机配套设施都很难找到漏气点,随后我们只能对进水管道进行一个全面的检查,检查发现主要原因属于客户公司所采用的进水管法兰片偏薄里面的橡胶密封垫也相对较薄所致,管道是钢管加上总长度总长大约6米垂直高度约3米、由于法兰片偏薄在紧法兰螺栓的过程中有可能会导致法兰片变形的现象出现。
最后俩人采用对角拧螺丝的方式把所有法兰螺栓全部再拧紧一次、然后再次启动泵并把排气阀打开,结果自吸泵排气口明显感觉到有气排出、水也在向上逐渐提升最终水被抽了上来。
另外需要告知广大使用自吸泵类产品的用户,自吸泵在加满水之后自吸时间长短取决于自吸泵本身的自吸性能以及自吸泵进口管道的长度、高度、管道大小等因素有关,很多使用的人因为担心自吸泵时间开长了会把自吸泵搞坏了,我们必须要为您分享只要自吸泵泵体里面有水、泵体不发热手还能摸不烫手的情况下长时间运行不会对泵有影响,所以如果遇到自吸高度高、距离长可以加满水之后多运行一阵子、如果泵体有点热了可以一边运行、一边给加水口里面加水进去起到冷却降温的作用、帮助自吸泵提高自吸能力。
检查自吸泵不上水
恒压自吸泵系统
自吸泵吸水管道
00:18
自吸泵出水效果
结合这一情况我公司给贵公司一点建议:
1、进水法兰以后应该选用标准的法兰片、每次安装管道都要对角拧紧螺栓、要保证每颗螺栓都要拧不动为止。
2、所采购的自吸泵属于普通型自吸泵、自吸能力一般实际自吸高度只能在4-5米、自吸时间比较长,所以对安装要求特别严格。我们建议以后选用我公司的高吸程自吸泵产品这类产品自吸高度能达到6-8米、或者如果抽的距离较远可以选用带真空辅助的自吸泵产品、自吸高度能达到9米水平距离最远能达到300米,并且自吸时间非常快,长远考虑要想降低售后成本、并让用户对所提供的产品得到高度好评及认可,我方建议选用高吸程自吸泵,我方会把成本降到最低,给予大力支持,能让用户长期购买我们的产品才是长远之计
2,其次,通电后如果不转,要及时关机。因为多倍的启动电流如果持续太多秒时间,就会烧坏线圈绕组。
3,如果电容启动绕组在启动后可以自动切除,就还要检查切除开关[亦即,离心开关]是否失灵,引起接触不良。