压力泵原理及使用方法
高压泵是一种非常常见的泵,有气动、油压和电动的区别,按泵轴方向可分为卧式、立式、斜式;按壳体剖分型式分为径向剖分式和轴向剖分式;按级数分为单级和复级;按吸入形式分为单吸和双吸;按水泵形式分各中心支承式,管道式、共座式、分座式、可移式;等等。本文,贤集网小编就来为大家介绍一下高压泵的原理、作用及操作方法吧!
高压泵原理 | 高压泵的作用及操作方法
高压泵原理:
1、高压油泵的原理
高压泵主要对缸内直喷发动机,燃油在燃油泵作用后可以加压到3bar——4bar,进入高压燃油泵,高压燃油泵通过凸轮轴带动,输出120——200bar的压力,然后通过高压喷油嘴直接喷射到汽缸内。这些高压喷油嘴是通过发动机电脑精确控制的。燃油通过高压直接喷射到燃烧室内,使之完全雾化,达到充分的燃烧效果。
它的原理是通过电脑控制、将燃油精确的直接喷射到燃烧室中。与传统的汽油喷射系统相比,直喷系统最大的优势在于其更优秀的热力学效果。因为汽油直喷系统可以根据发动机需要和驾驶条件来准确地控制汽油喷射量,从而可以和充足的空气进行几乎完全的燃烧,进而提升了工作效率。其用户利益是在提高车辆动力性的同时,提升了燃油使用效率,从而降低油耗并减少二氧化碳排放量,达到了节油与环保的双重功效。
2、高压水泵的原理
高压水射流设备的核心部件是是高压泵,它的主要作用是将定量的水变成高压力水流,使得水流具有强大的冲击力。其中高压泵的种类繁多,如高压柱塞泵、高压往复泵、高压电动试压泵等等。其中用于高压清洗机的高压泵以活塞泵最为常见,主要的原因是活塞泵运作效率高,而且使用寿命更长。高压泵的活塞通一般有陶瓷制作,用此种材料不容易被磨损耐用,因此使用的寿命较长。
活塞泵是通过一个固定的密封件,一根活塞前后运动。活塞泵靠活塞往复运动,使得泵腔工作容积周期变化,实现吸入和排出液体。而柱塞泵的密封件安装在柱塞上,通过一个光滑的缸壁。它主要是利用柱塞在泵缸体内往复运动,使柱塞与泵壁间形成容积改变,反复吸入和排出液体并增高其压力的泵。柱塞泵一般有更好的初期使用特性,其优点是具有额定压力高、结构紧凑、效率高和流量调节方便等,但它的的缺点是不能运行过高的压力,使用寿命也比较短。
高压泵的作用:
1、高压泵主要用于各种建筑、地下铁、高速公路,为其加强固定基地。还可利用液压供液疏通管道。
2、高压泵还可增压液体应用到各个行业,采用单气控使得泵能自动的进行运动,高压泵的泵体制造采用的是铝合金。其它部分采用相应的不锈钢或者碳钢等。同时泵为了保证的性能,采用了一系列的优质产品。当然在使用上所选取的材料直接的影响到了泵的使用寿命问题。
3、高压泵在近年来国产了多数新型的产品如:柱塞泵等,因为高压泵具有高压、使用寿命长、结构比较小等多种特性,得到广泛的应用。如船舶、机床、钢铁等行业。
4、高压泵在应用上时的电机电流可能要高5至6倍,会对高压泵上的电机产生直接的影响,而且在电量上消耗的也是比较多的。从实际工作来看,对电机进行一些改造还是有必要的,因为虽然说在设计的时候会对电机留有一定的余量,而电机虽然速度不变,但在实际的工作中,有的时候也是需要以较低或者较高的运行速度。可通过改变设备来实现电压达到最节能的高速目的,提供过压、过载等现象的保护,以实现软启动。
高压泵原理 | 高压泵的作用及操作方法
高压泵的操作方法:
1、对高压泵的乳化液箱及油位是否达到规定的标准进行检查。
2、压力表、安全阀、水位表、指示器等是否正确,好用,为防止阀芯因一系列原因堵塞,每年对安全阀及压力表进行一次检查,以确保能够正常进行工作。
3、针对水泵的各个部位,电磁阀、阀门、管道等进行检查,泵停止使用时,超过一周以上,需要对绝缘状态是否良好进行检测。
4、开泵流程:
(1)、对泵进行开动前期的一个基本的检查,做好前期工作。
(2)、开起油泵进行运转后,待指示灯显示正常即可启动高压泵。
(3)、高压泵泵头排气完毕后关闭排气阀。
(4)、高压泵可正常运转时,水位达到一定的高度,可给水压机发出可开始工作信号。
5、阀门开启与关闭时都需要对其进行缓慢的旋转操作。
6、在工作时需要坚守岗位,不能离开,因为如果不稍加注意,可能会存在各种现象的发生。
7、出现超压现象,要立即进行处理。
8、检查气阀、气管是否存在漏气现象,可采用肥皂水检测法。浓缩设备
9、在使用高压泵过程中,出现不正常的情况,应立即关闭相关阀门,发出停机信号。
10、停机流程:
(1)、收到停机信号,再次给水压机发回可以停机信号。
(2)、同样将蓄水罐补充水位7级以上。
(3)、切断水泵电源。
(4)、高压泵运转停止后,切断所以的电源,关闭水阀门。
水泵抽不出水是什么原因分为以下几种
一、 进水管和泵体内有空气
(1)水泵启动前未灌满足够的水,有时看上去灌的水已从放气孔溢出,但未转动泵轴交空气完全排出,致使少许空气残留在进水管或泵体中。
(2)与水泵接触的进水管的水平段逆水流方向应用0.5%以上的下降坡度,连接水泵进口的一端为最高,不要完全水平。如果向上翘起,进水管内会存留空气,降低了水管和水泵中的真空度,影响吸水。
(3)水泵的填料因长期使用已经磨损或填料压得过松,造成大量的水从填料与泵轴轴套的间隙中喷出,其结果是外部的空气就从这些间隙进入水泵的内部,影响了提水。 机械密封的泵机械密封损坏泄露。
(4)进水管因长期潜在水下,管壁腐蚀出现孔洞,水泵工作后水面不断下降,当这些孔洞露出水面后,空气就从孔洞进入民进水管。
(5)进水管弯管处出现裂痕,进水管与水泵连接处出现微小的间隙,都有可能使空气进入进水管。
二、水泵转速过低
(1)人为的因素。有部分用户因原配电机损坏,就随意配上另一台电动机带动,结果造成了流量小、扬程低甚至不上水的后果。
(2)水泵本身的机械故障。叶轮与泵轴紧固螺母松脱或泵轴变形弯曲,造成叶轮多移,直接与泵体磨擦,或轴承损坏,都有可能降低水泵的转速。
(3)动力机维修不灵。电动机因绕组烧毁,而失磁,维修中绕组匝数、线径、接线方法的改变,或维修中故障未彻底排除因素也会使水泵转速改变。
三、吸程太大
有些水源较深,有些水源的外围地势较平坦处,而忽略了水泵的容许吸程,因而产生了吸水少或根本吸不上水的结果。要知道水泵吸水口处能建立的真空度是有限度的,绝对真空的吸程约为10米水柱高,而水泵不可能建立绝对的真空。而且真空度过大,易使泵内的水气化,对水泵工作不利。所以各离心泵都有其最大容许吸程,一般在3-8.5米之间。安装水泵时切不可只图方便简单。
四、水流的进出水管中的阻力损失过大
有些用户经过测量,虽然蓄水池或水塔到水源水面的垂直距离还略小于水泵扬程,但还是提水量小或提不上水。其原因常是管道太长、水管弯道多,水流在管道中阻力损失过大。其原因常是管道太长、水管弯道多,水流在管道中阻力损失过大。一般情况下90度弯管比120度弯管阻力大,每一90度弯管扬程损失约0.5-1米,每20米管道的阻力可使扬程损失约1 1 米。此外,有部分用户还随意水泵进、出管的管径,这些对扬程也有一定的影响。
五、其它因素的影响
(1)底阀打不开。通常是由于水泵搁置时间太长,底阀垫圈被粘死,无垫圈的底阀可能会锈死。
(2)底阀滤器网被堵塞;或底阀潜在水中污泥层中造成滤网堵塞。
(3)叶轮磨损严重。叶轮叶片经长期使用而磨损,影响了水泵性能。
(4)闸阀可止回阀有故障或堵塞会造成流量减小甚至抽不上水。
(5)出口管道的泄漏也会影响提水量。
自吸泵运行中,由于叶轮的高速旋转,在其入口处造成了真空,在吸入水池水面大气压于叶轮进口处的绝对压力之差的作用下,水自吸水管端流入叶轮的进口。由于1atm等于10.33mh2o高,所以自吸泵的最大吸水高度HSS不会超过10.33m.实际上,这个压力差在水流的流动过程中要转化成位置头、流速头,并克服各项水头损失,还要保持在进口具有一定能量(压头),这就使自吸泵的吸水高度小于10.33m。
从自吸泵进水口到叶轮的进口,流道的过水断面面积一般是收缩减小,当流量一定时,流速沿程增加,但是压力是相应降低的。当水流进入叶轮,绕流叶片头部时,水流急剧转弯、流速增大,在叶片背面k点处尤为显著,使水流在k点处的压力急剧降低。K点以后,由于叶片对水流做功,水流在叶轮中受到由叶片传来的机械能,压力才迅速升高。上述流速变化及水流从水泵进口到k点处的流程中,均伴有水力损失,消耗部分能量,使压力降低。
由此可见,自吸泵吸水管的绝对压力是按水流的方向沿程下降的,水泵进口处并不是泵内压力最低的地方,泵内水流压力最低的地方是在叶片进口附近背面的k点处。
1、出口阀调节。 出口管路上安装调节阀,靠阀的开启度调节流量方法简单,但功率损失大,不经济。
2、旁路调节 。利用旁路分流调节流量 可解决泵在小流量连续运转的问题,但功率损失和管线增加。
3、转速调节。 调节泵轴的转速调节流量 功率损失很小,但需增加调速机构或选用调速电机,改变转速的方法最适用于汽轮机、内燃机和直流电机驱动的泵,也可用变频调节来改变电动机转速。
4、切割叶轮外径 。切割叶轮外径调节泵的流量 功率损失小,但叶轮切割后不能恢复且叶轮的切割量有限,适用于需长期在较小流量下工作且流量改变不大的场合。
5、更换叶轮。 更换不同直径的叶轮调节泵的流量 功率损失小,但需备各种直径的叶轮,调节流量的范围有限。
6、堵死几个叶轮流道 。堵死几个叶轮流道(偶数)减少泵的流量 相当于节流调节,但比调节阀节流节能。